Methods Inf Med 2005; 44(03): 414-417
DOI: 10.1055/s-0038-1633986
Original Article
Schattauer GmbH

Normalization for Affymetrix GeneChips

T. Boes
1   Institut für Medizinische Informatik, Biometrie und Epidemiologie, Universitätsklinikum Essen, Essen, Germany
,
M. Neuhäuser
1   Institut für Medizinische Informatik, Biometrie und Epidemiologie, Universitätsklinikum Essen, Essen, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
06. Februar 2018 (online)

Summary

Objectives: The high density oligonucleotide micro-arrays from Affymetrix (Affymetrix GeneChips) are very popular in biomedical research. They enable to study the expression of thousands of genes simultaneously. In experiments with multiple arrays, normalization techniques are used to reduce the so-called obscuring variation, i.e. the technical variation that is of non-biological origin. Several different normalization methods have been proposed during the last years.

Methods: We review published results about the comparison of normalization methods proposed for Affymetrix GeneChips.

Results: The quantile normalization seems to perform favorably regarding precision (low variance), accuracy (low bias), and practicability (low computing time). However, according to very recent results [1], this normalization method can have an impact on the biological variability and, therefore, appears to be less than optimal from this point of view.

Conclusion: Although the quantile normalization may be recommendable, more investigations based on more data sets are needed so that the different normalization methods can be evaluated on widely differing data.

 
  • References

  • 1 Parrish RS, Spencer HJ. Effect of normalization on significance testing for oligonucleotide microarrays. J Biopharm Statist 2004; 14: 575-89.
  • 2 Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. High density synthetic oligonucleotide arrays. Nat Genet 1999; 21 (Suppl. 01) Suppl 20-4.
  • 3 Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996; 14: 1675-80.
  • 4 Hartemink AJ, Gifford DK, Jaakkola TS, Young RA. Maximum likelihood estimation of optimal scaling factors for expression array normalization. In SPIE BIOS. California: San Jose; 2001
  • 5 Sidorov IA, Hosack DA, Gee D, Yang J, Cam MC, Lempicki RA, Dimitrov DS. Oligonucleotide microarray data distribution and normalization. Inf Sci 2002; 146: 67-73.
  • 6 Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185-93.
  • 7 Statistical Algorithms Description Document, Affymetrix 2002. http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf
  • 8 Li C, Wong WH. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol 2001; 2 (08) research 0032.1-0032. 11.
  • 9 Workman C, Jensen JJ, Jarmer H, Berka R, Gautier L, Nielser HB, Saxild HH, Nielsen C, Brunak S, Knudsen S. A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 2002; 3 (09) research 0048.1-0048 16
  • 10 Hoffmann R, Seidl T, Dugas M. Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis. Genome Biol 2002; 3 (07) research 0033.1-0033 11
  • 11 Saviozzi S, Calogero RA. Microarray probe expression measures, data normalization and statistical validation. Comp Funct Genomics 2003; 4: 442-6.
  • 12 Hasenclever D, Freudenberg J, Boriss H. Comparison of normalisation procedures for oligonucleotide micro-arrays by parametric bootstrap simulation of spike-in experiments (abstract). Biometrical J 2004; 46 Suppl 4
  • 13 Gautier L, Cope L, Bolstad BM, Irizarry RA. affy – analysis of Affymetrix Gene Chip data at the probe level. Bioinformatics 2004; 20: 307-15.
  • 14 Wit E, McClure J. Statistics for microarray: design, analysis, and inference. Chichester. John Wiley & Sons 2004
  • 15 Schadt EE, Li C, Ellis B, Wong WH. Feature extraction and normalization algorithms for highdensity oligonucleotide gene expression array data. J Cell Biochem 2001; 84 (Suppl. 37) Suppl 120-5.
  • 16 Li C, Wong WH. DNA-chip analyzer (dchip). In. The analysis of gene expression data. Parmigani G, Garrett ES, Irizarry RA, Zeger SL. (eds.) New York: Springer; 2003: 120-41.
  • 17 Astrand M. Contrast normalization of oligonucleotide arrays. J Comput Biol 2003; 10: 95-102.
  • 18 Irizarry RA, Hobbs B, Colin F, Beazer-Barclay YD, Antonellis K, Scherf U, Speed TP. Exploration, normalization and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249-64.
  • 19 Cope LM, Irizarry RA, Jaffee HA, Wu Z, Speed TP. A benchmark for Affymetrix Gene Chip expression measures. Bioinformatics 2004; 20: 323-31.
  • 20 Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW, Golub TR, Sellers WR. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002; 1: 203-9.