Synthesis 2019; 51(22): 4215-4230
DOI: 10.1055/s-0037-1611916
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed One-Pot Stereospecific Synthesis of 2-Deoxy Aryl C-Glycosides from Glycals and Anilines in the Presence of tert-Butyl Nitrite

Adesh Kumar Singh
,
Rapelly Venkatesh
,
Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India   Email: jeyakumar.chy@iitbhu.ac.in
› Author Affiliations
J.K. acknowledges the Department of Science and Technology, India (DST-India) (DST/INT/MPG/P-09/2016) and the Max-Planck Society, Germany for financial support through an Indo-Max Planck partner group project. A.K.S. acknowledges the Council of Scientific and Industrial Research (CSIR) for a senior research fellowship [File No: 09/1217(0005/2015-EMR-I]. R.V. is grateful to the Indian Institute of Technology (IIT) (BHU) for a research fellowship.
Further Information

Publication History

Received: 22 June 2019

Accepted after revision: 08 August 2019

Publication Date:
26 August 2019 (online)


Abstract

The palladium-catalyzed one-pot synthesis of 2,3-deoxy-3-keto aryl C-glycosides is achieved from glycals and anilines in the presence of tert-butyl nitrite and aqueous HBF4 under mild conditions. This one-pot method stereospecifically provides α- and β-aryl glycosides (≥19:1 by NMR) in good yields at room temperature. The configuration at the C-3 position in the glycal determines the anomeric selectivity (i.e., α or β) of the desired products.

Supporting Information

 
  • References

    • 1a Levy DE, Tang C. The Chemistry of C-Glycosides . Elsevier Science Ltd; Oxford: 1995
    • 1b Postema MH. D. C-Glycoside Synthesis . CRC Press; Boca Raton, FL: 1995
    • 1c Du Y, Linhardt RJ, Vlahov IR. Tetrahedron 1998; 54: 9913
    • 1d Kitamura K, Ando Y, Matsumoto T, Suzuki K. Chem. Rev. 2018; 118: 1495
    • 1e Yang Y, Yu B. Chem. Rev. 2017; 117: 12281
    • 1f Bililign T, Griffith BR, Thorson JS. Nat. Prod. Rep. 2005; 22: 742
    • 1g Koester DC, Leibeling M, Neufeld R, Werz DB. Org. Lett. 2010; 12: 3934
    • 1h Koester DC, Werz DB. Beilstein J. Org. Chem. 2012; 8: 675
    • 1i Koester DC, Kriemen E, Werz DB. Angew. Chem. Int. Ed. 2013; 52: 2985
    • 2a Rohr J, Thiericke R. Nat. Prod. Rep. 1992; 9: 103
    • 2b Nadig H. Helv Chim. Acta 1987; 70: 1217
    • 3a Kaelin DE, Lopez OD, Martin SF. J. Am. Chem. Soc. 2001; 123: 6937
    • 3b Zhu F, Rodriguez J, Yang T, Kevlishvili I, Miller E, Yi D, O’Neill S, Rourke MJ, Liu P, Walczak MA. J. Am. Chem. Soc. 2017; 139: 17908
    • 3c Yi D, Zhu F, Walczak MA. Org. Lett. 2018; 20: 1936
    • 4a Liu CF, Xiong DC, Ye XS. J. Org. Chem. 2014; 79: 4676
    • 4b Kusunuru AK, Jaladanki CK, Tatina MB, Bharatam PV, Mukherjee D. Org. Lett. 2015; 17: 3742
    • 4c Xiong DC, Zhang LH, Ye XS. Org. Lett. 2009; 11: 1709
    • 4d Bai YG, Kim LM. H, Liao HZ, Liu XW. J. Org. Chem. 2013; 78: 8821
    • 4e Li HH, Ye XS. Org. Biomol. Chem. 2009; 7: 3855
    • 4f Xiang SH, Cai ST, Zeng J, Liu XW. Org. Lett. 2011; 13: 4608
    • 4g Ramnauth J, Poulin O, Rakhit S, Maddaford SP. Org. Lett. 2001; 3: 2013
    • 4h Kusunuru AK, Yousuf SK, Tatina M, Mukherjee D. Eur. J. Org. Chem. 2015; 459
    • 4i Mabit T, Siard A, Legros F, Guillarme S, Martel A, Lebreton J, Carreaux F, Dujardin G, Collet S. Chem. Eur. J. 2018; 24: 14069
    • 5a Roglans A, Pla-Quintana A, Moreno-Manas M. Chem. Rev. 2006; 106: 4622
    • 5b Mo FY, Dong GB, Zhang Y, Wang JB. Org. Biomol. Chem. 2013; 11: 1582
    • 5c Colleville AP, Horan RA. J, Olazabal S, Tomkinson NC. O. Org. Process Res. Dev. 2016; 20: 1283
    • 5d Murphy JA, Rasheed F, Roome SJ, Lewis N. Chem. Commun. 1996; 737
    • 5e Beletskaya IP, Sigeev AS, Peregudov AS, Petrovskii PV. Synthesis 2007; 2534
    • 6a Masllorens J, Bouquillon S, Roglans A, Henin F, Muzart J. J. Organomet Chem. 2005; 690: 3822
    • 6b Zhilong L, Leung TF, Tong R. Chem. Commun. 2014; 50: 10990
    • 6c Frota C, Polo EC, Esteves H, Correia CR. D. J. Org. Chem. 2018; 83: 2198
    • 6d Meira PR. R, Moro AV, Correia CR. D. Synthesis 2007; 2279
    • 6e Severino EA, Costenaro ER, Garcia AL. L, Correia CR. D. Org. Lett. 2003; 5: 305
    • 6f Oliveira DF, Severino EA, Correia CR. D. Tetrahedron. Lett. 1999; 40: 2083
    • 6g Machado AH. L, de Sousa MA, Patto DC. S, Azevedo LF. S, Bombonato FI, Correia CR. D. Tetrahedron Lett. 2009; 50: 1222
    • 6h Siqueira FA, Taylor JG, Correia CR. D. Tetrahedron Lett. 2010; 51: 2102
    • 6i Prediger P, da Silva AR, Correia CR. D. Tetrahedron 2014; 70: 3333
    • 6j Schmidt B, Holter F, Kelling A, Schilde U. J. Org. Chem. 2011; 76: 3357
    • 6k Schmidt B, Holter FA. Chem. Eur. J. 2009; 15: 11948
    • 6l Schmidt B, Biernat A. Eur. J. Org. Chem. 2008; 5764
    • 6m Schmidt B. Chem. Commun. 2003; 1656
    • 6n Schmidt BA. Org. Lett. 2000; 2: 791
  • 7 Singh AK, Kandasamy J. Org. Biomol. Chem. 2018; 16: 5107
  • 8 Tang S, Zheng Q, Xiong DC, Jiang S, Li Q, Ye XS. Org. Lett. 2018; 20: 3079
    • 9a Li PF, Jia XD. Synthesis 2018; 50: 711
    • 9b Csende F. Mini-Rev. Org. Chem. 2015; 12: 127
    • 9c He LM, Qiu GY. S, Gao YQ, Wu J. Org. Biomol. Chem. 2014; 12: 6965
    • 9d Oger N, d’Halluin M, Le Grognec EL, Felpin FX. Org. Process Res. Dev. 2014; 18: 1786
    • 10a Barral K, Moorhouse AD, Moses JE. Org. Lett. 2007; 9: 1809
    • 10b Schmidt B, Elizarov N, Riemer N, Holter F. Eur. J. Org. Chem. 2015; 5826
    • 10c Doyle MP, Bryker WJ. J. Org. Chem. 1979; 44: 1572
  • 11 Chaudhary P, Gupta S, Muniyappan N, Sabiah S, Kandasamy J. Green. Chem. 2016; 18: 2323
  • 12 Chauhan S, Chaudhary P, Singh AK, Verma P, Srivastava V, Kandasamy J. Tetrahedron Lett. 2018; 59: 272
  • 13 Azeez S, Chaudhary P, Sureshbabu P, Sabiah S, Kandasamy J. Org. Biomol. Chem. 2018; 16: 8280
  • 14 Chaudhary P, Gupta S, Muniyappan N, Sabiah S, Kandasamy J. J. Org. Chem. 2019; 84: 104
  • 15 Sureshbabu P, Azeez S, Chaudhary P, Kandasamy J. Org. Biomol. Chem. 2019; 17: 845
  • 16 Zeng J, Sun G, Yao W, Zhu Y, Wang R, Cai L, Liu K, Zhang Q, Liu XW, Wan Q. Angew. Chem. Int. Ed. 2017; 56: 5227
  • 17 Zhao J, Wei S, Ma X, Shao H. Carbohydr. Res. 2010; 345: 168
  • 18 Hattori H, Roesslein J, Caspers P, Zerbe K, Ondozabal HM, Ritz D, Rueedi G, Gademann K. Angew. Chem. Int. Ed. 2018; 57: 11020
  • 19 Beau JM, Jaurand G, Esnault J, Sinay P. Tetrahedron Lett. 1987; 28: 1105
  • 20 Wang A.-P, Liu C, Yang S, Zhao Z, Lei P. Tetrahedron 2016; 72: 285
  • 21 Snow GM. J. L, Araujo N, Jenkinson SF, Martinez RF, Shimada Y, Yu CY, Kato A, Fleet GW. J. Org. Lett. 2012; 14: 2142
  • 22 Loiseleur O, Ritson D, Nina M, Crowley P, Wagner T, Hanessian S. J. Org. Chem. 2007; 72: 6353
  • 23 Xiao R, Dane EL, Zeng J, McKnight CJ, Grinstaff MW. J. Am. Chem. Soc. 2017; 139: 14217
  • 24 Chennaiah A, Verma AK, Vankar YD. J. Org. Chem. 2018; 83: 10535
  • 25 Kopper S, Lundt I, Pedersen C, Thiem J. Liebigs Ann. Chem. 1987; 531