Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(13): 1536-1540
DOI: 10.1055/s-0037-1611877
DOI: 10.1055/s-0037-1611877
letter
Surveying Iron–Organic Framework TAL-1-Derived Materials in Ligandless Heterogeneous Oxidative Catalytic Transformations of Alkylarenes
Funding Information: Tallinna Tehnikaülikool, (Grant/Award Number: B62) Eesti Teadusagentuur, (Grant/Award Number: IUT19-9, IUT34–14, PSG250, and PUT1290).Further Information
Publication History
Received: 09 April 2019
Accepted after revision: 07 June 2019
Publication Date:
03 July 2019 (online)
Published as part of the Special Section 10th EuCheMS Organic Division Young Investigator Workshop
Abstract
The use of carbonized materials derived from metal–organic frameworks (MOFs) in catalytic organic transformations is less well explored than is the use of MOFs. Here, we survey the oxidative performance of heterogeneous catalyst materials derived from the polycrystalline iron–organic framework TAL-1.
Key words
iron catalysis - oxidation - sustainable chemistry - metal–organic framework - alkyl arenes - carboxylic acidsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611877.
- Supporting Information
-
References and Notes
- 1 Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou H.-C. Adv. Mater. 2018; 30: 1704303
- 2 Kirchon A, Feng L, Drake HF, Joseph EA, Zhou H.-C. Chem. Soc. Rev. 2018; 47: 8611
- 3 Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Mater. Today; DOI: 10.1016/j.mattod.2018.10.038
- 4 Dhakshinamoorthy A, Li Z, Garcia H. Chem. Soc. Rev. 2018; 47: 8134
- 5 Yang D, Gates BC. ACS Catal. 2019; 9: 1779
- 6 Oar-Arteta L, Wezendonk T, Sun X, Kapteijn F, Gascon J. Mater. Chem. Front. 2017; 1: 1709
- 7 Chen Y.-Z, Zhang R, Jiao L, Jiang H.-L. Coord. Chem. Rev. 2018; 362: 1
- 8 Liu L, Corma A. Chem. Rev. 2018; 118: 4981
- 9 Kong, D.; Gao, Y.; Xiao, Z.; Xu, X.; Li, X.; Zhi, L. Adv. Mater. ; DOI: 10.1002/adma.201804973
- 10a Zhao S, Yin H, Du L, He L, Zhao K, Chang L, Yin G, Zhao H, Liu S, Tang Z. ACS Nano 2014; 8: 12660
- 10b Xia BY, Yan Y, Li N, Wu HB, Lou XW, Wang X. Nat. Energy 2016; 1: 15006
- 10c Li J, Chen M, Cullen DA, Hwang S, Wang M, Li B, Liu K, Karakalos S, Lucero M, Zhang H, Lei C, Xu H, Sterbinsky GE, Feng Z, Su D, More KL, Wang G, Wang Z, Wu G. Nat. Catal. 2018; 1: 935
- 10d Wang R, Yan T, Han L, Chen G, Li H, Zhang J, Shia L, Zhang D. J. Mater. Chem. A 2018; 6: 5752
- 11 Ping, K.; Braschinsky, A.; Alam, M.; Bhadoria, R.; Mihkli, V.; Mere; A.; Aruväli, J.; Paiste, P.; Vlassov, S.; Kook, M.; Rähn, M.; Sammelselg, V.; Tammeveski, K.; Kongi, N.; Starkov, P. ChemRxiv 2019; preprint; DOI: 10.26434/chemrxiv.7687358
- 12a Jagadeesh RV, Murugesan K, Alshammari AS, Neumann H, Pohl M.-M, Radnik J, Beller M. Science 2017; 358: 326-332
- 12b Murugesan K, Beller M, Jagadeesh RV. Angew. Chem. Int. Ed. 2019; 58: 5064-5068
- 12c Gong W, Lin Y, Chen C, Al-Mamun M, Lu H.-S, Wang G, Zhang H, Zhao H. Adv. Mater. 2019; 31: 1808341
- 12d Xie F, Lu G.-P, Xie R, Chen Q.-H, Jiang H.-F, Zhang M. ACS Catal. 2019; 9: 2718
- 12e Wu Y, Chen Z, Cheong W.-C, Zhang C, Zheng L, Yan W, Yu R, Chen C, Li Y. Chem. Sci. 2019; 10: 5345
- 13 Jasinski R. Nature 1964; 201: 1212
- 14 Xia W, Mahmood A, Liang L, Zou R, Guo S. Angew. Chem. Int. Ed. 2016; 55: 2650
- 15 Masa J, Xia W, Muhler M, Schuhmann W. Angew. Chem. Int. Ed. 2015; 54: 10102
- 16 Shao M, Chang Q, Dodelet J.-P, Chenitz R. Chem. Rev. 2016; 116: 3594
- 17 Yang HB, Miao J, Hung S.-F, Chen J, Tao HB, Wang X, Zhang L, Chen R, Gao J, Chen HM, Dai L, Liu B. Sci. Adv. 2016; 2: e1501122
- 18 Zhang L, Xiao J, Wang H, Shao M. ACS Catal. 2017; 7: 7855
- 19 Vanjari R, Singh KN. Chem. Soc. Rev. 2015; 44: 8062
- 20 Hudlicky H. Oxidations in Organic Chemistry, ACS Monograph No. 186. American Chemical Society; Washington: 1990
- 21 Nakanishi M, Bolm C. Adv. Synth. Catal. 2007; 349: 861
- 22 5-Methylisophthalic Acid (Table 2, Entry 7): Typical Procedure A mixture of mesitylene (100 mg, 0.832 mmol, 1.0 equiv), 70% aq TBHP (2.05 mL, 14.98 mmol, 18.0 equiv), and TAL-1–900 (4.2 mg) was stirred at 80 °C for 24 h. It was then filtered through a Celite pad with MeOH. The resulting solution was concentrated under reduced pressure then purified by flash chromatography [silica gel, EtOAc–PE (1:20 to 1:10)] to give a colorless solid; yield: 57.2 mg (0.317 mmol, 38%); mp 296–297 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 13.18 (s, 2 H), 8.28 (s, 1 H), 7.98 (s, 2 H), 2.43 (s, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 166.7, 138.8, 133.9, 131.2, 127.3, 20.6. HRMS (ESI): m/z [M + H]+ calcd. for C9H9O4: 181.0495; found: 181.0496.
- 23 Zhang S, Guo L.-N, Wang H, Duan X.-H. Org. Biomol. Chem. 2013; 11: 4308
- 24 Barton DH. R, Le Gloahec VN. Tetrahedron 1998; 54: 15457
- 25 Xu Z. Sci. Rep. 2013; 3: 2914
- 26 Qi J, Zhang W, Cao R. ChemCatChem 2018; 10: 1206
For leading references on the use of MOF-derived carbonized materials in ORR/OER, see:
For recent references on the use of MOF-derived carbonized materials in organic transformations, see: