Synlett 2019; 30(13): 1536-1540
DOI: 10.1055/s-0037-1611877
letter
© Georg Thieme Verlag Stuttgart · New York

Surveying Iron–Organic Framework TAL-1-Derived Materials in Ligandless Heterogeneous Oxidative Catalytic Transformations of Alkylarenes

Kefeng Ping
a   Department of Chemistry and Biotechnology, Tallinn University of Technology, 15 Akadeemia Rd, Tallinn, 12618, Estonia   Email: pavel.starkov@taltech.ee
,
Mahboob Alam
a   Department of Chemistry and Biotechnology, Tallinn University of Technology, 15 Akadeemia Rd, Tallinn, 12618, Estonia   Email: pavel.starkov@taltech.ee
,
Maike Käärik
b   Institute of Chemistry, University of Tartu, 14a Ravila St, Tartu, 50411, Estonia
,
Jaan Leis
b   Institute of Chemistry, University of Tartu, 14a Ravila St, Tartu, 50411, Estonia
,
Nadežda Kongi
b   Institute of Chemistry, University of Tartu, 14a Ravila St, Tartu, 50411, Estonia
,
Ivar Järving
a   Department of Chemistry and Biotechnology, Tallinn University of Technology, 15 Akadeemia Rd, Tallinn, 12618, Estonia   Email: pavel.starkov@taltech.ee
,
Pavel Starkov
a   Department of Chemistry and Biotechnology, Tallinn University of Technology, 15 Akadeemia Rd, Tallinn, 12618, Estonia   Email: pavel.starkov@taltech.ee
› Author Affiliations
Funding Information: Tallinna Tehnikaülikool, (Grant/Award Number: B62) Eesti Teadusagentuur, (Grant/Award Number: IUT19-9, IUT34–14, PSG250, and PUT1290).
Further Information

Publication History

Received: 09 April 2019

Accepted after revision: 07 June 2019

Publication Date:
03 July 2019 (online)


Published as part of the Special Section 10th EuCheMS Organic Division Young Investigator Workshop

Abstract

The use of carbonized materials derived from metal–organic frameworks (MOFs) in catalytic organic transformations is less well explored than is the use of MOFs. Here, we survey the oxidative performance of heterogeneous catalyst materials derived from the polycrystalline iron–organic framework TAL-1.

Supporting Information

 
  • References and Notes

  • 1 Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou H.-C. Adv. Mater. 2018; 30: 1704303
  • 2 Kirchon A, Feng L, Drake HF, Joseph EA, Zhou H.-C. Chem. Soc. Rev. 2018; 47: 8611
  • 3 Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Mater. Today; DOI: 10.1016/j.mattod.2018.10.038
  • 4 Dhakshinamoorthy A, Li Z, Garcia H. Chem. Soc. Rev. 2018; 47: 8134
  • 5 Yang D, Gates BC. ACS Catal. 2019; 9: 1779
  • 6 Oar-Arteta L, Wezendonk T, Sun X, Kapteijn F, Gascon J. Mater. Chem. Front. 2017; 1: 1709
  • 7 Chen Y.-Z, Zhang R, Jiao L, Jiang H.-L. Coord. Chem. Rev. 2018; 362: 1
  • 8 Liu L, Corma A. Chem. Rev. 2018; 118: 4981
  • 9 Kong, D.; Gao, Y.; Xiao, Z.; Xu, X.; Li, X.; Zhi, L. Adv. Mater. ; DOI: 10.1002/adma.201804973

    • For leading references on the use of MOF-derived carbonized materials in ORR/OER, see:
    • 10a Zhao S, Yin H, Du L, He L, Zhao K, Chang L, Yin G, Zhao H, Liu S, Tang Z. ACS Nano 2014; 8: 12660
    • 10b Xia BY, Yan Y, Li N, Wu HB, Lou XW, Wang X. Nat. Energy 2016; 1: 15006
    • 10c Li J, Chen M, Cullen DA, Hwang S, Wang M, Li B, Liu K, Karakalos S, Lucero M, Zhang H, Lei C, Xu H, Sterbinsky GE, Feng Z, Su D, More KL, Wang G, Wang Z, Wu G. Nat. Catal. 2018; 1: 935
    • 10d Wang R, Yan T, Han L, Chen G, Li H, Zhang J, Shia L, Zhang D. J. Mater. Chem. A 2018; 6: 5752
  • 11 Ping, K.; Braschinsky, A.; Alam, M.; Bhadoria, R.; Mihkli, V.; Mere; A.; Aruväli, J.; Paiste, P.; Vlassov, S.; Kook, M.; Rähn, M.; Sammelselg, V.; Tammeveski, K.; Kongi, N.; Starkov, P. ChemRxiv 2019; preprint; DOI: 10.26434/chemrxiv.7687358

    • For recent references on the use of MOF-derived carbonized materials in organic transformations, see:
    • 12a Jagadeesh RV, Murugesan K, Alshammari AS, Neumann H, Pohl M.-M, Radnik J, Beller M. Science 2017; 358: 326-332
    • 12b Murugesan K, Beller M, Jagadeesh RV. Angew. Chem. Int. Ed. 2019; 58: 5064-5068
    • 12c Gong W, Lin Y, Chen C, Al-Mamun M, Lu H.-S, Wang G, Zhang H, Zhao H. Adv. Mater. 2019; 31: 1808341
    • 12d Xie F, Lu G.-P, Xie R, Chen Q.-H, Jiang H.-F, Zhang M. ACS Catal. 2019; 9: 2718
    • 12e Wu Y, Chen Z, Cheong W.-C, Zhang C, Zheng L, Yan W, Yu R, Chen C, Li Y. Chem. Sci. 2019; 10: 5345
  • 13 Jasinski R. Nature 1964; 201: 1212
  • 14 Xia W, Mahmood A, Liang L, Zou R, Guo S. Angew. Chem. Int. Ed. 2016; 55: 2650
  • 15 Masa J, Xia W, Muhler M, Schuhmann W. Angew. Chem. Int. Ed. 2015; 54: 10102
  • 16 Shao M, Chang Q, Dodelet J.-P, Chenitz R. Chem. Rev. 2016; 116: 3594
  • 17 Yang HB, Miao J, Hung S.-F, Chen J, Tao HB, Wang X, Zhang L, Chen R, Gao J, Chen HM, Dai L, Liu B. Sci. Adv. 2016; 2: e1501122
  • 18 Zhang L, Xiao J, Wang H, Shao M. ACS Catal. 2017; 7: 7855
  • 19 Vanjari R, Singh KN. Chem. Soc. Rev. 2015; 44: 8062
  • 20 Hudlicky H. Oxidations in Organic Chemistry, ACS Monograph No. 186. American Chemical Society; Washington: 1990
  • 21 Nakanishi M, Bolm C. Adv. Synth. Catal. 2007; 349: 861
  • 22 5-Methylisophthalic Acid (Table 2, Entry 7): Typical Procedure A mixture of mesitylene (100 mg, 0.832 mmol, 1.0 equiv), 70% aq TBHP (2.05 mL, 14.98 mmol, 18.0 equiv), and TAL-1–900 (4.2 mg) was stirred at 80 °C for 24 h. It was then filtered through a Celite pad with MeOH. The resulting solution was concentrated under reduced pressure then purified by flash chromatography [silica gel, EtOAc–PE (1:20 to 1:10)] to give a colorless solid; yield: 57.2 mg (0.317 mmol, 38%); mp 296–297 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 13.18 (s, 2 H), 8.28 (s, 1 H), 7.98 (s, 2 H), 2.43 (s, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 166.7, 138.8, 133.9, 131.2, 127.3, 20.6. HRMS (ESI): m/z [M + H]+ calcd. for C9H9O4: 181.0495; found: 181.0496.
  • 23 Zhang S, Guo L.-N, Wang H, Duan X.-H. Org. Biomol. Chem. 2013; 11: 4308
  • 24 Barton DH. R, Le Gloahec VN. Tetrahedron 1998; 54: 15457
  • 25 Xu Z. Sci. Rep. 2013; 3: 2914
  • 26 Qi J, Zhang W, Cao R. ChemCatChem 2018; 10: 1206