Synlett 2019; 30(01): 77-81
DOI: 10.1055/s-0037-1611359
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of the Deacetoxytubuvaline Fragment of Pretubulysin and its Lipophilic Analogues for Enhanced Permeability in Cancer Cell Lines

Ramesh B. Reddy
a   Discipline of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453 552, India
,
Premansh Dudhe
a   Discipline of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453 552, India
,
Venkatesh Chelvam*
a   Discipline of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453 552, India
b   Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore-453 552, India   Email: cvenkat@iiti.ac.in
› Author Affiliations
We would like to extend our sincere gratitude to the Science and Engineering Research Board, Department of Science and Technology, Government of India, for providing funding under the grant number EMR/2015/001764.
Further Information

Publication History

Received: 18 September 2018

Accepted after revision: 26 October 2018

Publication Date:
06 December 2018 (online)


Abstract

In the last two decades, tubulysins have emerged as alternatives to microtubule depolymerizing agents such as colchicine and vinblastine, which are well-established anticancer agents. However, the complex structure of tubulysins has always posed a challenge for synthetic chemists to scale up the production of these compounds. We report a new strategy for the practical gram-scale synthesis of a (4R)-4-[(tert-butoxycarbonyl)amino]-5-methylhexanoic acid through regioselective cleavage of a chiral aziridine ring with a vinyl Grignard reagent to afford tert-butyl [(1R)-1-isopropylbut-3-en-1-yl]carbamate, which was subjected to regioselective hydroboration–oxidation with 9-BBN. The resulting (4R)-4-[(tert-butoxycarbonyl)amino]-5-methylhexanoic acid was successfully transformed into the deacetoxytubuvaline fragment of pretubulysin or its highly lipophilic methyl-substituted thiazole and oxazole analogues for incorporation into pretubulysins. Increasing the lipophilicity of tubulysin or pretubulysin molecules should enhance their cell permeability and cytotoxicity in cancer cell lines.

Supporting Information

 
  • References and Notes

  • 1 Mukhtar E, Adhami VM, Mukhtar H. Mol. Cancer Ther. 2014; 13: 275
  • 2 Sasse F, Steinmetz H, Heil J, Höfle G, Reichenbach H. J. Antibiot. 2000; 53: 879
  • 3 Sandmann A, Sasse F, Müller R. Chem. Biol. 2004; 11: 1071
  • 4 Wang Z, McPherson PA, Raccor BS, Balachandran R, Zhu G, Day BW, Vogt A, Wipf P. Chem. Biol. Drug Des. 2007; 70: 75
  • 5 Rath S, Liebl J, Fürst R, Ullrich A, Burkhart JL, Kazmaier U, Herrmann J, Müller R, Günther M, Schreiner L, Wagner E, Vollmar AM, Zahler S. Br. J. Pharmacol. 2012; 167: 1048
  • 6 Staben LR, Yu S.-F, Chen J, Yan G, Xu Z, Del Rosario G, Lau JT, Liu L, Guo J, Zheng B, dela Cruz-Chuh J, Lee BC, Ohri R, Cai W, Zhou H, Kozak KR, Xu K, Phillips GD. L, Lu J, Wai J, Polson AG, Pillow TH. ACS Med. Chem. Lett. 2017; 8: 1037
  • 7 Murray BC, Peterson MT, Fecik RA. Nat. Prod. Rep. 2015; 32: 654
  • 8 Herrmann J, Elnakady YA, Wiedmann RM, Ullrich A, Rohde M, Kazmaier U, Vollmar AM, Müller R. PLoS One 2012; 7: e37416
  • 9 Braig S, Wiedmann RM, Liebl J, Singer M, Kubisch R, Schreiner L, Abhari BA, Wagner E, Kazmaier U, Fulda S, Vollmar AM. Cell Death Dis. 2014; 5: e1001
  • 10 Eirich J, Burkhart JL, Ullrich A, Rudolf GC, Vollmar A, Zahler S, Kazmaier U, Sieber SA. Mol. BioSyst. 2012; 8: 2067
  • 11 Truebenbach I, Gorges J, Kuhn J, Kern S, Baratti E, Kazmaier U, Wagner E, Lächelt U. Macromol. Biosci. 2017; 17: 1600520
  • 12 Ullrich A, Herrmann J, Müller R, Kazmaier U. Eur. J. Org. Chem. 2009; 6367
  • 13 Nicolaou KC, Erande RD, Yin J, Vourloumis D, Aujay M, Sandoval J, Munneke S, Gavrilyuk J. J. Am. Chem. Soc. 2018; 140: 3690
  • 14 Brindisi M, Maramai S, Grillo A, Brogi S, Butini S, Novellino E, Campiani G, Gemma S. Tetrahedron Lett. 2016; 57: 920
  • 15 Colombo R, Wang Z, Han J, Balachandran R, Daghestani HN, Camarco DP, Vogt A, Day BW, Mendel D, Wipf P. J. Org. Chem. 2016; 81: 10302
  • 16 Trabocchi A, Guarna F, Guarna A. Curr. Org. Chem. 2005; 9: 1127
  • 17 Ordóñez M, Cativiela C. Tetrahedron: Asymmetry 2007; 18: 3
  • 18 Menche D, Hassfeld J, Li J, Rudolph S. J. Am. Chem. Soc. 2007; 129: 6100
  • 19 Stark M, Assaraf YG. Oncotarget 2017; 8: 49973; DOI: 10.18632/oncotarget.18385
  • 20 Wipf P, Takada T, Rishel MJ. Org. Lett. 2004; 6: 4057
  • 21 Shankar PS, Sani M, Saunders FR, Wallace HM, Zanda M. Synlett 2011; 1673
    • 22a Kitir B, Baldry M, Ingmer H, Olsen CA. Tetrahedron 2014; 70: 7721
    • 22b Ye W, Leow D, Goh SL. M, Tan C.-T, Chian C.-H, Tan C.-H. Tetrahedron Lett. 2006; 47: 1007
  • 23 Methyl 2-{(3R)-3-[(tert-Butoxycarbonyl)(methyl)amino]-4-methylpentyl}-1,3-thiazole-4-carboxylate (1) Anhyd DMF (2 mL) was added to the thiazole ethyl ester 11 (0.080 g, 0.22 mmol) in a 10 mL round-bottomed flask equipped with a magnetic stirrer bar. MeI (0.05 mL, 0.89 mmol) was then added, and the mixture was cooled to 0 °C. NaH (0.013 g, 0.55 mmol) was added portionwise over 15 min with constant stirring, and the mixture was stirred at 25 °C under N2 for a further 12 h. When 11 was completely consumed (TLC), the reaction was quenched with sat. aq NH4Cl (10 mL). The aqueous layer was extracted with EtOAc (3 × 25 mL), and the combined organic extracts were washed with brine (3 × 10 mL), dried (Na2SO4), filtered, and concentrated under reduced pressure. The resulting crude residue was purified by column chromatography [silica gel, hexane–EtOAc (80:20)] to give a colorless liquid; yield: 70.0 mg (87%); TLC: Rf = 0.25 (hexane–EtOAc, 70:30). [α]D 20 –20.4 (c 0.1, CH2Cl2). IR (CH2Cl2): 2963, 2920 (C–H), 1722, 1694 (C=O), 1685 (C=N), 1484, 1392 (C–H), 1170 (C–O), 1155 (S–O), 867 (=C–H), 775, 720 (C–H) cm–1. 1H NMR (400 MHz, CDCl3, 25 °C): δ = 8.08 (s, 1 H, rotamer 1), 8.06 (s, 1 H, rotamer 2), 3.95 (s, 3 H, rotamer 1), 3.94 (s, 3 H, rotamer 2), 2.99–2.95 (m, 4 H, rotamers 1 + 2), 2.70 (s, 3 H, rotamer 1), 2.65 (s, 3 H, rotamer 2), 2.18–2.11 (m, 2 H, rotamers 1 + 2), 1.89–1.81 (m, 2 H, rotamers 1 + 2), 1.70–1.67 (m, 4 H, rotamers 1 + 2), 1.46 (s, 9 H, rotamer 1), 1.43 (s, 9 H, rotamer 2), 0.96 (t, J = 6.0 Hz, 6 H, rotamer 1), 0.85 (d, J = 6.5 Hz, 6 H, rotamer 2). 13C NMR (100 MHz, CDCl3, 25 °C): δ = 171.9, 162.0, 156.6, 146.5, 127.2, 79.6, 60.3, 52.5, 30.73, 30.5, 30.0, 29.7, 28.4, 20.2, 19.9. Diagnostic signals of minor rotamer 13C NMR (100 MHz, CDCl3, 25 °C): δ = 171.5, 161.9, 146.4, 79.2, 52.4, 20.1, 19.6. HRMS (ESI): m/z [M + H]+ calcd for C17H29N2O4S: 379.1662; found: 379.1675.