Synlett 2019; 30(16): 1850-1854
DOI: 10.1055/s-0037-1610719
synpacts
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed Migratory Arylboration of Nonactivated Alkenes

Wang Wang ◊
,
Chao Ding ◊
,
Guoyin Yin
The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, 430072 Wuhan, P. R. of China   Email: yinguoyin@whu.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (No. 21702151, 21871211) and the Fundamental Research Funds for Central Universities.
Further Information

Publication History

Received: 06 May 2019

Accepted after revision: 29 May 2019

Publication Date:
26 June 2019 (eFirst)

These authors contributed equally to this paper.

Abstract

An unprecedented nickel-catalyzed 1,n-arylboration (n >2) of terminal nonactivated alkenes has been developed. This reaction is the first example of a regioselective arylboration of terminal nonactivated alkenes and features high selectivity, wide functional-group tolerance, and operational simplicity. Remarkably, preliminary mechanistic studies indicated that an equilibrium of various nickel intermediates exists in this transformation, but bond formation is favored at the benzylic position.

 
  • References


    • For reviews on metal-catalyzed alkene difunctionalization, see:
    • 1a Jensen KH, Sigman MS. Org. Biomol. Chem. 2008; 6: 4083
    • 1b McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 1c Saini V, Stokes BJ, Sigman MS. Angew. Chem. Int. Ed. 2013; 52: 11206
    • 1d Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
    • 1e Coombs JR, Morken JP. Angew. Chem. Int. Ed. 2016; 55: 2636
    • 1f Chemler SR, Karyakarte SD, Khoder ZM. J. Org. Chem. 2017; 82: 11311
    • 1g Derosa J, van der Puyl VA, Tran VT, Engle KM. Chem. Sci. 2018; 9: 5278
    • 1h Wang F, Chen P, Liu G. Acc. Chem. Res. 2018; 51: 2036

      For reviews, see:
    • 2a Vasseur A, Bruffaerts J, Marek I. Nat. Chem. 2016; 8: 209
    • 2b Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent. Sci. 2018; 4: 153
    • 3a Kalyani D, Sanford MS. J. Am. Chem. Soc. 2008; 130: 2150
    • 3b Kalyani D, Satterfield AD, Sanford MS. J. Am. Chem. Soc. 2010; 132: 8419
    • 3c Satterfield AD, Kubota A, Sanford MS. Org. Lett. 2011; 13: 1076
    • 4a Urkalan KB, Sigman MS. Angew. Chem. Int. Ed. 2009; 48: 3146
    • 4b Werner EW, Urkalan KB, Sigman MS. Org. Lett. 2010; 12: 2848
    • 4c Saini V, Sigman MS. J. Am. Chem. Soc. 2012; 134: 11372
    • 4d Saini V, Liao L, Wang Q, Jana R, Sigman MS. Org. Lett. 2013; 15: 5008
    • 4e Yamamoto E, Hilton MJ, Orlandi M, Saini V, Toste FD, Sigman MS. J. Am. Chem. Soc. 2016; 138: 15877
    • 4f Orlandi M, Hilton MJ, Yamamoto E, Toste FD, Sigman MS. J. Am. Chem. Soc. 2017; 139: 12688
    • 5a Nelson HM, Williams BD, Miró J, Toste FD. J. Am. Chem. Soc. 2015; 137: 3213
    • 5b He Y, Yang Z, Thornbury RT, Toste FD. J. Am. Chem. Soc. 2015; 137: 12207
    • 5c Mir J, del Pozo C, Toste FD, Fustero S. Angew. Chem. Int. Ed. 2016; 55: 9045

      For selected examples of alkene difunctionalization with the assistance of directing groups, see:
    • 6a Neufeldt SR, Sanford MS. Org. Lett. 2013; 15: 46
    • 6b Talbot EP. A, Fernandes T. deA, McKenna JM, Toste FD. J. Am. Chem. Soc. 2014; 136: 4101
    • 6c Su W, Gong T.-J, Lu X, Xu M.-Y, Yu C.-G, Xu Z.-Y, Yu H.-Z, Xiao B, Fu Y. Angew. Chem. Int. Ed. 2015; 54: 12957
    • 6d Yang K, Gurak JA. Jr, Liu Z, Engle KM. J. Am. Chem. Soc. 2016; 138: 14705
    • 6e Liu Z, Zeng T, Yang KS, Engle KM. J. Am. Chem. Soc. 2016; 138: 15122
    • 6f Gu J.-W, Min Q.-Q, Yu L.-C, Zhang X. Angew. Chem. Int. Ed. 2016; 55: 12270
    • 6g García-Domínguez A, Li Z, Nevado C. J. Am. Chem. Soc. 2017; 139: 6835
    • 6h Shrestha B, Basnet P, Dhungana RK, KC S, Thapa S, Sears JM, Giri R. J. Am. Chem. Soc. 2017; 139: 10653
    • 6i Derosa J, Tran VT, Boulous MN, Chen JS, Engle KM. J. Am. Chem. Soc. 2017; 139: 10657
  • 7 Thornbury RT, Saini V, Fernandes TA, Santiago CB, Talbot EP. A. Sigman M. S, McKenna JM, Toste FD. Chem. Sci. 2017; 8: 2890
  • 8 Li W, Boon JK, Zhao Y. Chem. Sci. 2018; 9: 600
  • 9 Basnet P, Dhungana RK, Thapa S, Shrestha B, KC S, Sears JM, Giri R. J. Am. Chem. Soc. 2018; 140: 7782

    • For reviews on nickel catalysis, see:
    • 10a Montgomery J. In Organometallics in Synthesis: 4th Manual . Lipshutz BH. Wiley; Hoboken: 2013. Chap. III 319
    • 10b Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 10c Ananikov VP. ACS Catal. 2015; 5: 1964

      For reviews, see:
    • 11a Suginome M. Chem. Rec. 2010; 10: 348
    • 11b Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
    • 11c Shimizu Y, Kanai M. Tetrahedron Lett. 2014; 55: 3727
    • 11d Semba K, Fujihara T, Terao J, Tsuji Y. Tetrahedron 2015; 71: 2183
    • 11e Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
    • 11f Semba K, Nakao Y. Yuki Gosei Kagaku Kyokaishi 2017; 75: 1133

      For examples of 1,2-arylboration by dual-metal catalysis, see:
    • 12a Semba K, Nakao Y. J. Am. Chem. Soc. 2014; 136: 7567
    • 12b Smith KB, Logan KM, You W, Brown MK. Chem. Eur. J. 2014; 20: 12032
    • 12c Logan KM, Smith KB, Brown MK. Angew. Chem. Int. Ed. 2015; 54: 5228
    • 12d Semba K, Ohtagaki Y, Nakao Y. Org. Lett. 2016; 18: 3956
    • 12e Logan KM, Brown MK. Angew. Chem. Int. Ed. 2017; 56: 851
    • 12f Chen B, Cao P, Yin X, Liao Y, Jiang L, Ye J, Wang M, Liao J. ACS Catal. 2017; 7: 2425
    • 12g Huang Y, Brown KM. Angew. Chem. Int. Ed. 2019; 58: 6048

      For examples of 1,2-arylboration by single Pd catalysis, see:
    • 13a Yang K, Song Q. J. Org. Chem. 2015; 81: 1000
    • 13b Yang K, Song Q. Org. Lett. 2016; 18: 5460
    • 13c Liu Z, Li X, Zeng T, Engle KM. ACS Catal. 2019; 9: 3260
  • 14 For an example of 1,2-arylboration by single Ni catalysis, see: Logan KM, Sardini SR, White SD, Brown MK. J. Am. Chem. Soc. 2018; 140: 159
  • 15 Bergmann A, Dorn S, Smith K, Logan K, Brown MK. Angew. Chem. Int. Ed. 2019; 58: 1719
  • 16 Lin B.-L, Liu L, Fu Y, Luo S.-W, Chen Q, Guo Q.-X. Organometallics 2004; 23: 2114
  • 17 Wang W, Ding C, Li Y, Li Z, Li Y, Peng L, Yin G. Angew. Chem. Int. Ed. 2019; 58: 4612
    • 18a Li S, Huang K, Zhang J, Wu W, Zhang X. Org. Lett. 2013; 15: 1036
    • 18b Claudino TS, Scholten JD, Monteiro AL. Catal. Commun. 2017; 102: 53
    • 18c Yin Y, Dai Y, Jia H, Li J, Bu L, Qiao B, Zhao X, Jiang Z. J. Am. Chem. Soc. 2018; 140: 6083
    • 19a Reid WB, Spillane JJ, Krause SB, Watson DA. J. Am. Chem. Soc. 2016; 138: 5539
    • 19b Li L, Gong T, Xiao B, Fu Y. Nat. Commun. 2017; 8: 345

      For examples, see
    • 20a Bair JS, Schramm Y, Sergeev AG, Clot E, Eisenstein O, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 13098
    • 20b Buslov I, Becouse J, Mazza S, Montandon-Clerc M, Hu X. Angew. Chem. Int. Ed. 2015; 54: 14523
    • 20c Buslov I, Song F, Hu X. Angew. Chem. Int. Ed. 2016; 55: 12295
    • 20d He Y, Cai Y, Zhu S. J. Am. Chem. Soc. 2017; 139: 1061
    • 20e Gaydou M, Moragas T, Juliá-Hernández F, Martin R. J. Am. Chem. Soc. 2017; 139: 12161
    • 20f Zhou F, Zhu J, Zhang Y, Zhu S. Angew. Chem. Int. Ed. 2018; 57: 4058
    • 20g Xiao J, He Y, Ye F, Zhu S. Chem. 2018; 4: 1645
    • 20h Wang Z.-Y, Wan J.-H, Wang G.-Y, Wang R, Jin R.-X, Lan Q, Wang X.-S. Tetrahedron Lett. 2018; 59: 2302
    • 20i Kapat A, Sperger T, Guven S, Schoenebeck S. Science 2019; 363: 391
  • 21 For a review, see: Yang G, Zhang W. Chem. Soc. Rev. 2018; 47: 1783
  • 22 Wang W, Ding C, Pang H, Yin G. Org. Lett. 2019; 21: 3968