Synlett 2019; 30(01): 109-113
DOI: 10.1055/s-0037-1610672
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed C(sp3)–H Azidation of 1,3-Dihydro-2H-indol-2-ones Under Mild Conditions

Wen-Hui Bao
a  School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: weiwenting@nbu.edu.cn
,
Le-Han Gao
a  School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: weiwenting@nbu.edu.cn
,
Wei-Wei Ying
a  School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: weiwenting@nbu.edu.cn
,
Wei-Ting Chen
a  School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: weiwenting@nbu.edu.cn
,
Gan-Ping Chen
a  School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: weiwenting@nbu.edu.cn
,
Wen-Ting Wei*
a  School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: weiwenting@nbu.edu.cn
,
Yan-Yun Liu*
b  Department of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, P. R. of China
,
Qiang Li
c  Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. of China
› Author Affiliations
This research is sponsored by the National Natural Science Foundation of China (Grant 21801142), the Natural Science Foundation of Zhejiang Province (No. LQ18B020002), State Key Laboratory of Analytical Chemistry for Life Science (No. SKLACLS1804), the Open Subject of State Key Laboratory of Chemo/Biosensing and Chemometrics (2017016), Education Foundation of Zhejiang Province (No. Y201737123), and the K. C. Wong Magna Fund in Ningbo University.
Further Information

Publication History

Received: 15 August 2018

Accepted after revision: 16 October 2018

Publication Date:
14 November 2018 (online)


◊These authors contributed equally to this work.

Abstract

A simple and economical synthesis of 3-substituted 3-azido-1,3-dihydro-2H-indol-2-ones has been realized under mild conditions through copper-catalyzed C(sp3)–H azidation of the corresponding 1,3-dihydro-2H-indol-2-ones with trimethylsilyl azide. The reaction proceeds by an efficient pathway involving the addition of a N3 radical to the enol tautomer and consecutive C(sp3)−N bond formations. The method is valuable because of its mild reaction conditions, short reaction times, and broad substrate scope, and because of the rich biological activity of the resulting 3-substituted 3-azido-1,3-dihydro-2H-indol-2-one products.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 1b Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
    • 1c Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138

      For selected reviews, see:
    • 2a Chemler SR, Fuller PH. Chem. Soc. Rev. 2007; 36: 1153
    • 2b Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
    • 2c Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464

      For selected reviews, see:
    • 3a Murakami K, Yamada S, Kaneda T, Itami K. Chem. Rev. 2017; 117: 9302
    • 3b Davies HM. L, Morton D. J. Org. Chem. 2016; 81: 343
    • 3c Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
    • 3d He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754

      For selected papers, see:
    • 4a Zhao H, Chen X, Jiang H, Zhang M. Org. Chem. Front. 2018; 5: 539
    • 4b Meng D, Tang Y, Wei J, Shi X, Yang M. Chem. Commun. 2017; 53: 5744
    • 4c Gou Q, Yang Y.-W, Liu Z.-N, Qin J. Chem. Eur. J. 2016; 22: 16057
    • 4d Li Z, Wu S.-S, Luo Z.-G, Liu W.-K, Feng C.-T, Ma S.-T. J. Org. Chem. 2016; 81: 4386

      For selected papers, see:
    • 5a Daggupatia RV, Malapaka C. Org. Chem. Front. 2018; 5: 788
    • 5b Tran BL, Li B, Driess M, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 2555
    • 5c Lao Z.-Q, Zhong W.-H, Lou Q.-H, Li Z.-J, Meng X.-B. Org. Biomol. Chem. 2012; 10: 7869
    • 5d Sun B, Wang Y, Li D, Jin C, Su W. Org. Biomol. Chem. 2018; 16: 2902

      For selected papers, see:
    • 6a Yang Q, Choy P, Fu W, Fan B, Kwong F. J. Org. Chem. 2015; 80: 11193
    • 6b Wang C.-S, Wu X.-F, Dixneuf PH, Soulé J.-F. ChemSusChem 2017; 10: 3075
    • 7a Huang L, Lin J.-S, Tan B, Liu X.-Y. ACS Catal. 2015; 5: 2826
    • 7b Rabet PT. G, Fumagalli G, Boyd S, Greaney MF. Org. Lett. 2016; 18: 1646

      For selected reviews and papers, see:
    • 8a Huang X, Groves JT. ACS Catal. 2016; 6: 751
    • 8b Banert K, Berndt C, Hagedorn M, Liu H, Anacker T, Friedrich J, Rauhut G. Angew. Chem. Int. Ed. 2012; 51: 4718
    • 8c Yang Y, Song R.-J, Ouyang X.-H, Wang C.-Y, Li J.-H, Luo S. Angew. Chem. Int. Ed. 2017; 56: 7916
    • 8d Lubriks D, Sokolovs I, Suna E. J. Am. Chem. Soc. 2012; 134: 15436
    • 8e Liu Y.-Y, Yang X.-H, Song R.-J, Luo S, Li J.-H. Nat. Commun. 2017; 8: 14720
    • 8f Klahn P, Erhardt H, Kotthaus A, Kirsch SF. Angew. Chem. Int. Ed. 2014; 53: 7913
    • 8g Liu C, Wang X, Li Z, Cui L, Li C. J. Am. Chem. Soc. 2015; 137: 9820

      For selected reviews and papers, see:
    • 9a Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 9b Jensen BS. CNS Drug Rev. 2002; 8: 353
    • 9c Lin H, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 36
    • 9d Rottmann M, McNamara C, Yeung BK. S, Lee MC. S, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, González-Páez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck H.-P, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT. Science 2010; 329: 1175
    • 9e Yu J.-S, Zhou F, Liu Y.-L, Zhou J. Synlett 2015; 26: 2491
    • 10a Deng Q.-H, Bleith T, Wadepohl H, Gade LH. J. Am. Chem. Soc. 2013; 135: 5356
    • 10b Chen W.-T, Gao L.-H, Bao W.-H, Wei W.-T. J. Org. Chem. 2018; 83: 11074
  • 11 Huang Y.-L, Bao W.-H, Ying W.-W, Chen W.-T, Gao L.-H, Wang X.-Y, Chen G.-P, Ge G.-P, Wei W.-T. Synlett 2018; 29: 1485
  • 12 3-Azido-1,3-dihydro-2H-indol-2-ones 3aa3la; General Procedure A Schlenk tube was charged with the appropriate 1,3-dihydro-2H-indol-2-one 1 (0.3 mmol), TMSN3 (2a; 0.6 mmol), Cu(OAc)2 (0.06 mmol), and MeCN (2 mL). The mixture was then stirred at 40 °C under open air until the starting material was completely consumed (TLC). The solution was then concentrated under reduced pressure, and the mixture was purified by flash column chromatography (silica gel, hexane–EtOAc). 3-Azido-3-phenyl-1,3-dihydro-2H-indol-2-one (3aa) Yellow solid; yield: 66.0 mg (88%); mp 328–330 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 11.04 (s, 1 H), 7.45–7.33 (m, 6 H), 7.27 (d, J = 7.6 Hz, 1 H), 7.08–7.00 (m, 2 H). 13C NMR (100 MHz, DMSO-d 6): δ = 175.0, 142.1, 137.0, 131.0, 129.5, 129.2, 129.0, 126.6, 125.6, 123.2, 111.2, 70.2.
    • 13a Liu H, Guo Q, Chen C, Wang M, Xu Z. Org. Chem. Front. 2018; 5: 1522
    • 13b Zhou B, Zheng L, Xu Z, Jin H, Wu Q, Li T, Liu Y. ChemistrySelect 2018; 3: 7354
    • 13c Ouyang X.-H, Song R.-J, Liu Y, Hu M, Li J.-H. Org. Lett. 2015; 17: 6038
  • 14 Zhu W.-M, Bao W.-H, Ying W.-W, Chen W.-T, Huang Y.-L, Ge G.-P, Chen G.-P, Wei W.-T. Asian J. Org. Chem. 2018; 7: 337
    • 15a Tang C, Jiao N. J. Am. Chem. Soc. 2012; 134: 18924
    • 15b Dhineshkumar J, Gadde K, Prabhu KR. J. Org. Chem. 2018; 83: 228