Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(24): 4867-4874
DOI: 10.1055/s-0037-1610243
DOI: 10.1055/s-0037-1610243
paper
One-Pot Telescoped Synthesis of Thiazole Derivatives from β-Keto Esters and Thioureas Promoted by Tribromoisocyanuric Acid
Further Information
Publication History
Received: 19 June 2018
Accepted after revision: 20 July 2018
Publication Date:
15 August 2018 (online)
Dedicated to Prof. W. Bruce Kover on the occasion of his 80th anniversary
Abstract
A simple and efficient one-pot protocol has been developed for the synthesis of thiazole derivatives from readily available starting materials. Tribromoisocyanuric acid was successfully used for α-monohalogenation of β-keto esters in aqueous medium, which in the presence of thiourea and DABCO produced the corresponding 2-aminothiazoles in up to 87% yield. Extension of the reaction to thioacetamide and o-phenylenediamine led to 2-methylthiazole and quinoxalines, respectively. This approach enables telescoping of the two steps into a single process.
Key words
heterocycles - condensation - thiazole - quinoxaline - green chemistry - tribromoisocyanuric acid - pot-ecomomy - thioureaSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610243.
- Supporting Information
-
References
- 1a Chhabria MT. Patel S. Modi P. Brahmkshatriya PS. Curr. Top. Med. Chem. 2016; 16: 2841
- 1b Rouf A. Tanyeli C. Eur. J. Med. Chem. 2015; 97: 911
- 1c Metwally MA. Abdel-Latif E. Amer FA. Kaupp G. J. Sulfur Chem. 2004; 25: 63
- 1d Dondoni A. Phosphorus Sulfur Silicon Relat. Elem. 1985; 24: 1
- 2 Sharma RN. Xavier FP. Vasu KK. Chaturvedi SC. Pancholi SS. J. Enzyme Inhib. Med. Chem. 2009; 24: 890
- 3 Gu XH. Wan XZ. Jiang B. Bioorg. Med. Chem. Lett. 1999; 9: 569
- 4a Gomes PA. T. M. Barbosa MO. Santiago EF. Cardoso MV. O. Costa NT. C. Hernandes MZ. Moreira DR. M. Da Silva AC. Dos Santos TA. R. Pereira VR. A. Dos Santos FA. B. Pereira GA. N. Ferreira RS. Leite AC. L. Eur. J. Med. Chem. 2016; 121: 387
- 4b de Oliveira Filho GB. Cardoso MV. O. Espíndola JW. P. Oliveira e Silva DA. Ferreira RS. Coelho PL. Anjos PS. dos Santos ES. Meira CS. Moreira DR. M. Soares MB. P. Leite AC. L. Eur. J. Med. Chem. 2017; 141: 346
- 5 Łączkowski KZ. Sałat K. Misiura K. Podkowa A. Malikowska N. J. Enzyme Inhib. Med. Chem. 2016; 3: 1576
- 6 Bell FW. Cantrell AS. Högberg M. Jaskunas SR. Johansson NG. Jordan CL. Kinnick MD. Lind P. Morin JM. Noréen R. J. Med. Chem. 1995; 38: 4929
- 7 Li JJ. Heterocyclic Chemistry in Drug Discovery. Wiley; Hoboken: 2013
- 8 De Souza MV. N. J. Sulfur Chem. 2005; 26: 429
- 9 Hantzsch A. Weber JH. Ber. Dtsch. Chem. Ges. 1887; 20: 3118
- 11 Cook AH. Heilbron I. MacDonald SF. Mahadevan AP. J. Chem. Soc. 1949; 1064
- 12a Nagarajaiah H. Mishra AK. Moorthy JN. Org. Biomol. Chem. 2016; 14: 4129
- 12b Khan KM. Ambreen N. Karim A. Saied S. Amyn A. Ahmed A. Perveen S. J. Pharm. Res. 2012; 5: 651
- 13 Meng G. Wang M. Zheng A. Dou J. Guo Z. Green Chem. Lett. Rev. 2014; 7: 46
- 14a Zhao R. Gove S. Sundeen JE. Chen BC. Tetrahedron Lett. 2001; 42: 2101
- 14b Zhu YP. Yuan JJ. Zhao Q. Lian M. Gao QH. Liu MC. Yang Y. Wu AX. Tetrahedron 2012; 68: 173
- 15a Donohoe TJ. Kabeshov MA. Rathi AH. Smith IE. D. Org. Biomol. Chem. 2012; 10: 1093
- 15b Ma C. Miao Y. Zhao M. Wu P. Zhou J. Li Z. Xie X. Zhang W. Tetrahedron 2018; 74: 3602
- 16 Castagnolo D. Pagano M. Bernardini M. Botta M. Synlett 2009; 2093
- 17 Yadav JS. Reddy BV. S. Rao YG. Narsaiah AV. Tetrahedron Lett. 2008; 49: 2381
- 18 Zhao D. Guo S. Guo X. Zhang G. Yu Y. Tetrahedron 2016; 72: 5285
- 19 Lei W.-L. Wang T. Feng K.-W. Wu C.-Z. Liu Q. ACS Catal. 2017; 7: 7941
- 20a Scalacci N. Pelloja C. Raddi M. Castagnolo D. Synlett 2016; 27: 1883
- 20b Jalani HB. Pandya AN. Pandya DH. Sharma JA. Sudarsanam V. Vasu KK. Tetrahedron Lett. 2013; 54: 5403
- 20c Golubev V. Zubkov F. Krasavin M. Tetrahedron Lett. 2013; 54: 4844
- 20d Tang X. Zhu Z. Qi C. Wu W. Jiang H. Org. Lett. 2016; 18: 180
- 21 Hayashi Y. Chem. Sci. 2016; 7: 866
- 22a Sanabria CM. Costa BB. S. Viana GM. de Aguiar LC. S. de Mattos MC. S. Synthesis 2018; 50: 1359
- 22b Crespo LT. C. Nogueira GP. de Mattos MC. S. Esteves PM. ARKIVOC 2018; (ii): 205
- 22c Sanabria CM. do Casal MT. de Souza RB. A. de Aguiar LC. S. de Mattos MC. S. Synthesis 2017; 49: 1648
- 22d Sindra HC. de Mattos MC. S. J. Braz. Chem. Soc. 2016; 27: 1129
- 22e de Andrade VS. C. de Mattos MC. S. Synthesis 2016; 48: 1381
- 22f de Almeida LS. Esteves PM. de Mattos MC. S. Tetrahedron Lett. 2015; 56: 6843
- 23 For a review on the chemistry of tribromoisocyanuric acid, see: de Almeida LS. Esteves PM. de Mattos MC. S. Curr. Green Chem. 2014; 1: 94
- 24 de Almeida LS. Esteves PM. de Mattos MC. S. Synlett 2006; 1515
- 25 Mendonça GF. de Almeida LS. de Mattos MC. S. Esteves PM. Ribeiro RS. Curr. Org. Synth. 2015; 12: 603
- 26 Tozetti SD. F. de Almeida LS. Esteves PM. de Mattos MC. S. J. Braz. Chem. Soc. 2007; 18: 675
- 27 Mendonça GF. Sindra HC. de Almeida LS. Esteves PM. de Mattos MC. S. Tetrahedron Lett. 2009; 50: 473
- 28 For a review on the chemistry of quinoxalines, see: Pereira JA. Pessoa AM. Cordeiro MN. D. S. Fernandes R. Prudêncio C. Noronha JP. Vieira M. Eur. J. Med. Chem. 2015; 97: 664
- 29 Kumar A. Saxena D. Gupta MK. Green Chem. 2013; 15: 2699
- 30 Dunn PJ. Chem. Soc. Rev. 2012; 41: 1452
- 31 Romero-Ortega M. Aviles A. Cruz R. Fuentes A. Gómez RM. Plata A. J. Org. Chem. 2000; 65: 7244
- 32 Narender M. Reddy MS. Kumar VP. Srinivas B. Sridhar R. Nageswar YV. D. Rao KR. Synthesis 2007; 3469
- 33 Bhattacharya AK. J. Indian Chem. Soc. 1967; 44: 57
- 34 Gagiu FI. Farmacia 1966; 14: 21
- 35 Barton A. Breukelman SP. Kaye PT. Meakins GD. Morgan DJ. J. Chem. Soc., Perkin Trans. 1 1982; 159
- 36 Platonova OV. Volkova SB. Malin SA. Veretennikov EA. Laskin BM. Malin AS. Russ. J. Appl. Chem. 2008; 81: 513
- 37 Reddy KH. V. Reddy VP. Shankar J. Madhav B. Kumar BS. P. A. Nageswar YV. D. Tetrahedron Lett. 2011; 52: 2679
For our recent work on trihaloisocyanuric acids, see: