Synthesis 2018; 50(16): 3231-3237
DOI: 10.1055/s-0037-1610084
special topic
© Georg Thieme Verlag Stuttgart · New York

Vinylation of Benzylic Amines via C–N Bond Functionalization of Benzylic Pyridinium Salts

Weiye Guan
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA   Email: mpwatson@udel.edu
,
Jennie Liao
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA   Email: mpwatson@udel.edu
,
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA   Email: mpwatson@udel.edu
› Author Affiliations
The NIH (R01 GM111820) is gratefully acknowledged. J.L. thanks UD for a University Graduate Fellowship. NMR and other data were acquired at UD on instruments obtained with assistance from NSF and NIH funding (NSF CHE0421224, CHE1229234, CHE0840401, and CHE1048367; NIH P20 GM104316, P20 GM103541, and S10 OD016267).
Further Information

Publication History

Received: 23 March 2018

Accepted after revision: 08 May 2018

Publication Date:
18 June 2018 (online)


W.G. and J.L. are co-first authors.

Published as part of the Special Topic Modern Coupling Approaches and their Strategic Applications in Synthesis

Abstract

Cross-couplings of benzylic pyridinium salts and vinylboronic acids or esters have been developed. Via benzylic pyridinium intermediates, benzylic amines can be engaged in these cross-couplings through C–N bond functionalization. This method boasts mild reaction conditions and excellent tolerance for heteroaryl substituents and a range of functional groups.

Supporting Information

 
  • References

    • 1a Bartoli G. Di Antonio G. Giovannini R. Giuli S. Lanari S. Paoletti M. Marcantoni E. J. Org. Chem. 2008; 73: 1919
    • 1b Cha JS. Brown HC. J. Org. Chem. 1993; 58: 3974
    • 1c Gross T. Seayad AM. Ahmad M. Beller M. Org. Lett. 2002; 4: 2055
    • 1d Laval S. Dayoub W. Pehlivan L. Métay E. Favre-Réguillon A. Delbrayelle D. Mignani G. Lemaire M. Tetrahedron Lett. 2011; 52: 4072
    • 1e Nystrom RF. Brown WG. J. Am. Chem. Soc. 1948; 70: 3738
    • 2a Maity P. Shacklady-McAtee DM. Yap GP. A. Sirianni ER. Watson MP. J. Am. Chem. Soc. 2013; 135: 280
    • 2b Shacklady-McAtee DM. Roberts KM. Basch CH. Song Y.-G. Watson MP. Tetrahedron 2014; 70: 4257

    • See also:
    • 2c Basch CH. Cobb KM. Watson MP. Org. Lett. 2016; 18: 136
    • 2d Hu J. Sun H. Cai W. Pu X. Zhang Y. Shi Z. J. Org. Chem. 2016; 81: 14
    • 2e Moragas T. Gaydou M. Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
    • 2f Zhang H. Hagihara S. Itami K. Chem. Eur. J. 2015; 21: 16796
    • 2g Huang C.-Y. Doyle AG. J. Am. Chem. Soc. 2012; 134: 9541
    • 2h Jensen KL. Standley EA. Jamison TF. J. Am. Chem. Soc. 2014; 136: 11145
    • 2i Li M.-B. Tang X.-L. Tian S.-K. Adv. Synth. Catal. 2011; 353: 1980
    • 2j Wang T. Yang S. Xu S. Han C. Guo G. Zhao J. RSC Adv. 2017; 7: 15805
    • 2k Yi P. Zhuangyu Z. Hongwen H. Synthesis 1995; 245
  • 3 Basch CH. Liao J. Xu J. Piane JJ. Watson MP. J. Am. Chem. Soc. 2017; 139: 5313
    • 4a Hu X. Chem. Sci. 2011; 2: 1867
    • 4b Jones GD. Martin JL. McFarland C. Allen OR. Hall RE. Haley AD. Brandon RJ. Konovalova T. Desrochers PJ. Pulay P. Vicic DA. J. Am. Chem. Soc. 2006; 128: 13175
    • 4c Schley ND. Fu GC. J. Am. Chem. Soc. 2014; 136: 16588
    • 4d Zhou J. Fu GC. J. Am. Chem. Soc. 2004; 126: 1340
    • 4e Zheng B. Tang F. Luo J. Schultz JW. Rath NP. Mirica LM. J. Am. Chem. Soc. 2014; 136: 6499
    • 5a Yang Z. Tang P. Gauuan JF. Molino BF. J. Org. Chem. 2009; 74: 9546
    • 5b Yadav JS. Rajendar G. Rao RS. Pabbaraja S. J. Org. Chem. 2013; 78: 8524
    • 5c Butt NA. Zhang W. Chem. Soc. Rev. 2015; 44: 7929
    • 5d Kumar S. Reddy LC. S. Kumar Y. Kumar A. Singh BK. Kumar V. Malhotra S. Pandey MK. Jain R. Thimmulappa R. Sharma SK. Prasad AK. Biswal S. Van der Eycken E. DePass AL. Malhotra SV. Ghosh B. Parmar VS. Arch. Pharm. 2011; 345: 368
    • 5e Yuan Q. Yao K. Liu D. Zhang W. Chem. Commun. 2015; 51: 11834
    • 5f Gieshoff TN. Villa M. Welther A. Plois M. Chakraborty U. Wolf R. Jacobi von Wangelin A. Green Chem. 2015; 17: 1408
    • 5g Wu Y. Kwong F. Li P. Chan A. Synlett 2013; 24: 2009
    • 6a Breault GA. Oldfield J. Warner P. Tucker H. US5811459, 1998
    • 6b Jacques V. Rusche JR. Peet NP. Singh J. WO2012/118782, 2012
    • 6c Lubisch W. Treiber H.-J. Moller A. US6103720, 2000
    • 6d Tempone AG. Pompeu da Silva AC. M. Brandt CA. Martinez FS. Treiger Borborema SE. Barata da Silveira MA. de Andrade HF. Antimicrob. Agents Chemother. 2005; 49: 1076
    • 7a Alacid E. Nájera C. J. Org. Chem. 2009; 74: 2321
    • 7b Anselmi E. Abarbri M. Duchêne A. Langle-Lamandé S. Thibonnet J. Synthesis 2012; 44: 2023
    • 7c Fernandez Reina D. Ruffoni A. Al-Faiyz YS. S. Douglas JJ. Sheikh NS. Leonori D. ACS Catal. 2017; 7: 4126
    • 7d Frye EC. O’Connor CJ. Twigg DG. Elbert B. Laraia L. Hulcoop DG. Venkitaraman AR. Spring DR. Chem. Eur. J. 2012; 18: 8774
    • 7e Peña-López M. Ayán-Varela M. Sarandeses LA. Pérez Sestelo J. Chem. Eur. J. 2010; 16: 9905
    • 7f Ronson TO. Carney JR. Whitwood AC. Taylor RJ. K. Fairlamb IJ. S. Chem. Commun. 2015; 51: 3466
    • 7g Ueda M. Nakakoji D. Kuwahara Y. Nishimura K. Ryu I. Tetrahedron Lett. 2016; 57: 4142
    • 8a Kuwano R. Yokogi M. Org. Lett. 2005; 7: 945
    • 8b Narahashi H. Shimizu I. Yamamoto A. J. Organomet. Chem. 2008; 693: 283
    • 9a Baba Y. Toshimitsu A. Matsubara S. Synlett 2008; 2061
    • 9b Frlan R. Sova M. Gobec S. Stavber G. Časar Z. J. Org. Chem. 2015; 80: 7803
    • 9c Sova M. Frlan R. Gobec S. Stavber G. Časar Z. Appl. Organomet. Chem. 2015; 29: 528

      For other transition-metal-catalyzed strategies to 1,3-diaryl allylic products, see:
    • 10a Lee Y. Shabbir S. Lee S. Ahn H. Rhee H. Green Chem. 2015; 17: 3579
    • 10b Xu J. Zhai X. Wu X. Zhang YJ. Tetrahedron 2015; 71: 1712
    • 10c Kabalka GW. Dong G. Venkataiah B. Org. Lett. 2003; 5: 893
    • 10d Kayaki Y. Koda T. Ikariya T. Eur. J. Org. Chem. 2004; 4989
    • 10e Manabe K. Nakada K. Aoyama N. Kobayashi S. Adv. Synth. Catal. 2005; 347: 1499
    • 10f Sundararaju B. Achard M. Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
    • 10g Tabélé C. Curti C. Primas N. Kabri Y. Remusat V. Vanelle P. Synthesis 2015; 47: 3339
    • 10h Tsukamoto H. Sato M. Kondo Y. Chem. Commun. 2004; 1200
    • 10i Tsukamoto H. Uchiyama T. Suzuki T. Kondo Y. Org. Biomol. Chem. 2008; 6: 3005
    • 10j Zhang Y. Yin S.-C. Lu J.-M. Tetrahedron 2015; 71: 544
    • 10k Bouyssi D. Gerusz V. Balme G. Eur. J. Org. Chem. 2002; 2445
    • 10l Cui X. Wang S. Zhang Y. Deng W. Qian Q. Gong H. Org. Biomol. Chem. 2013; 11: 3094
    • 10m Hamasaka G. Sakurai F. Uozumi Y. Tetrahedron 2015; 71: 6437
    • 10n Hamasaka G. Sakurai F. Uozumi Y. Chem. Commun. 2015; 51: 3886
    • 10o Poláčková V. Toma Š. Kappe CO. Tetrahedron 2007; 63: 8742
    • 10p Mino T. Kogure T. Abe T. Koizumi T. Fujita T. Sakamoto M. Eur. J. Org. Chem. 2013; 1501
    • 10q Alacid E. Nájera C. J. Organomet. Chem. 2009; 694: 1658
    • 10r Moreno-Manas M. Pajuelo F. Pleixats R. J. Org. Chem. 1995; 60: 2396
    • 10s Nájera C. Gil-Moltó J. Karlström S. Adv. Synth. Catal. 2004; 346: 1798
    • 10t Singh R. Viciu MS. Kramareva N. Navarro O. Nolan SP. Org. Lett. 2005; 7: 1829
    • 10u Srimani D. Sarkar A. Tetrahedron Lett. 2008; 49: 6304
    • 10v Maslak V. Tokic-Vujosevic Z. Saicic RN. Tetrahedron Lett. 2009; 50: 1858
    • 10w Guo S. Yuan Y. Xiang J. New J. Chem. 2015; 39: 3093
    • 10x Liwosz TW. Chemler SR. Org. Lett. 2013; 15: 3034
    • 10y Narahashi H. Yamamoto A. Shimizu I. Chem. Lett. 2004; 33: 348
    • 10z Waldhart GW. Mankad NP. J. Organomet. Chem. 2015; 793: 171
    • 10aa Yang H. Sun P. Zhu Y. Yan H. Lu L. Qu X. Li T. Mao J. Chem. Commun. 2012; 48: 7847
    • 10ab Yang H. Yan H. Sun P. Zhu Y. Lu L. Liu D. Rong G. Mao J. Green Chem. 2013; 15: 976

      For reductive, cross-electrophile couplings of benzylic and vinyl electrophiles, see:
    • 11a Ackerman LK. G. Anka-Lufford LL. Naodovic M. Weix DJ. Chem. Sci. 2015; 6: 1115
    • 11b Cai Y. Benischke AD. Knochel P. Gosmini C. Chem. Eur. J. 2016; 23: 250
    • 11c Cherney AH. Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365
    • 11d Johnson KA. Biswas S. Weix DJ. Chem. Eur. J. 2016; 22: 7399
    • 11e Krasovskaya V. Krasovskiy A. Bhattacharjya A. Lipshutz BH. Chem. Commun. 2011; 47: 5717

      For transition-metal-free vinylations, see:
    • 12a Li C. Zhang Y. Sun Q. Gu T. Peng H. Tang W. J. Am. Chem. Soc. 2016; 138: 10774
    • 12b Li G. Wu L. Lv G. Liu H. Fu Q. Zhang X. Tang Z. Chem. Commun. 2014; 50: 6246
    • 12c Ueda M. Nishimura K. Kashima R. Ryu I. Synlett 2012; 23: 1085
  • 13 For allylic amines, see: Li M.-B. Wang Y. Tian S.-K. Angew. Chem. Int. Ed. 2012; 51: 2968
  • 14 Liao J. Guan W. Boscoe BP. Tucker JW. Tomlin JW. Garnsey MR. Watson MP. Org. Lett. 2018; 20: 3030
  • 15 Pangborn AB. Giardello MA. Grubbs RH. Rosen RK. Timmers FJ. Organometallics 1996; 15: 1518
  • 16 Ellwart M. Knochel P. Angew. Chem. Int. Ed. 2015; 54: 10662