Synlett 2013; 24(15): 2009-2013
DOI: 10.1055/s-0033-1339447
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient Oxidative Cross-Coupling Reaction between C–H and N–H Bonds; A Transition-Metal-Free Protocol at Room Temperature

Yinuo Wu
a   State Key Laboratory for Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
,
Fuk Yee Kwong
a   State Key Laboratory for Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
,
Pengfei Li*
a   State Key Laboratory for Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
b   Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong, P. R. of China    Fax: +86(755)86245672   Email: flyli1980@gmail.com
,
Albert S. C. Chan*
c   Institute of Creativity, Faculty of Science, Hong Kong Baptist University, Hong Kong   Email: ascchan@hkbu.edu.hk
› Author Affiliations
Further Information

Publication History

Received: 20 May 2013

Accepted after revision: 18 June 2013

Publication Date:
08 August 2013 (online)


Abstract

A transition-metal-free oxidative coupling of allylic C–H and heterocyclic/aromatic N–H bonds was performed under mild conditions. Promoted by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), up to 99% yield could be achieved.

Supporting Information

 
  • References and Notes

    • 1a Metal-Catalyzed Cross-Coupling Reactions . 2nd ed., Vol. 1. de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004: 2
    • 1b Beller M, Bolm C. Transition Metals for Organic Synthesis, Building Blocks and Fine Chemicals. 2nd ed., Vol. 1. Wiley-VCH; Weinheim: 2004: 2
    • 1c Nicolaou KC, Sorensen EJ. Classics in Total Synthesis II, More Targets, Strategies and Methods. Wiley-VCH; Weinheim: 2003
  • 2 For the concept of atom economy, see: Trost BM. Science 1991; 254: 1471
  • 4 Shirakawa E, Itoh K, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
  • 5 Liu W, Cao H, Zhang H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J. Am. Chem. Soc. 2010; 132: 16737
  • 6 Sun C.-L, Li H, Yu D.-G, Yu M, Zhou X, Lu X.-Y, Huang K, Zheng S.-F, Li B.-J, Shi Z.-J. Nat. Chem. 2010; 2: 1044

    • For a pioneering study by Itami and co-workers on metal-free cross-coupling of electron-deficient heterocyclic substrates, see:
    • 7a Yanagisawa S, Ueda K, Taniguchi T, Itami K. Org. Lett. 2008; 10: 4673
    • 7b For peroxide-mediated metal-free oxidative C–H/C–H cross-coupling of pyridine N-oxide with alkanes, see: Deng G, Ueda K, Yanagisawa S, Itami K, Li C.-J. Chem. Eur. J. 2009; 15: 333
  • 11 Petranyi G, Ryder NS, Stütz A. Science 1984; 224: 1239
  • 12 Olesen J. J. Neurol. 1991; 238: S23
  • 13 For a review, see: Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4490
  • 16 For an intramolecular oxidative C–H amination under metal-free conditions, see: Antonchick AP, Samanta R, Kulikov K, Lategahn J. Angew. Chem. Int. Ed. 2011; 50: 8605
  • 17 For metal-free iodine(III)-promoted direct intermolecular C–H amination reactions of acetylenes, see: Souto JA, Becker P, Iglesias Á, Muñiz K. J. Am. Chem. Soc. 2012; 134: 15505
  • 18 Wang Z.-M, Mo H.-J, Cheng D.-P, Bao W.-L. Org. Biomol. Chem. 2012; 10: 4249
  • 19 Analytical data of product 3a: 1H NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 1.6 Hz, 1 H), 7.48 (d, J = 2.0 Hz, 1 H), 7.41–7.23 (m, 10 H), 6.73 (dd, J = 7.0, 15.8 Hz, 1 H), 6.45 (d, J = 16.0 Hz, 1 H), 6.32 (t, J = 2.0 Hz, 1 H), 6.20 (d, J = 7.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 139.8, 139.6, 136.2, 133.9, 128.9, 128.74, 128.67, 128.29, 128.27, 127.54, 127.48, 126.9, 105.8, 67.7. IR: 3060, 3028, 1508, 1495, 1450, 1395, 1280, 1088, 1046, 748, 695 cm–1. HRMS: m/z [M+Na]+ calcd for C18H16N2Na: 283.1211; found: 283.1198.
  • 20 Analytical data of product 3c: 1H NMR (400 MHz, CDCl3): δ = 8.01 (s, 1 H), 7.77 (d, J = 8.0 Hz, 1 H), 7.66 (d, J = 8.4 Hz, 1 H), 7.45 (d, J = 6.8 Hz, 2 H), 7.41–7.38 (m, 2 H), 7.37–7.34 (m, 2 H), 7.33–7.30 (m, 3 H), 7.12 (dd, J = 3.0, 8.2 Hz, 1 H), 6.88 (dd, J = 7.0, 15.8 Hz, 1 H), 6.56 (d, J = 16.4 Hz, 1 H), 6.52 (d, J = 6.8 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 149.0, 139.0, 136.0, 134.6, 129.0, 128.8, 128.5, 128.4, 127.6, 127.0, 126.9, 126.1, 122.3, 121.9, 121.8, 120.4, 117.9, 69.3. IR: 3059, 3028, 1627, 1513, 1495, 1451, 1390, 1152, 1134, 967, 756, 695 cm–1 .
  • 21 Analytical data of product 5a: 1H NMR (400 MHz, CDCl3): δ = 7.45 (d, J = 8.8 Hz, 2 H), 7.39–7.36 (m, 4 H), 7.32–7.29 (m, 3 H), 7.25–7.22 (m, 1 H), 7.17–7.13 (m, 2 H), 6.72 (t, J = 7.4 Hz, 1 H), 6.66–6.62 (m, 3 H), 6.41 (dd, J = 6.2, 15.8 Hz, 1 H), 5.10 (d, J = 6.0 Hz, 1 H), 4.13 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 147.4, 142.2, 136.8, 131.2, 130.9, 129.3, 129.0, 128.7, 127.8, 127.7, 127.4, 126.7, 117.9, 113.8, 60.8. IR: 3407, 3055, 3025, 1601, 1502, 1449, 1314, 1261, 968, 747, 692 cm–1. HRMS: m/z [M – H]+ calcd for C21H18N: 284.1439; found: 284.1426.
  • 22 Analytical data of (E)-1,3-diphenylprop-2-en-1-amine: 1H NMR (400 MHz, CDCl3): δ = 7.46–7.36 (m, 6 H), 7.33–7.28 (m, 3 H), 7.25–7.21 (m, 1 H), 6.61 (dd, J = 3.8, 15.8 Hz, 1 H), 6.41–6.30 (m, 1 H), 5.11 (t, J = 7.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 141.4, 141.3, 136.8, 131.7, 131.5, 130.6, 130.5, 128.7, 127.9, 127.8, 127.2, 126.8, 79.4, 79.3.
  • 23 Unless otherwise noted, the reaction was carried out as following: To a solution of 1, 4-dioxane (1.0 mL) was added 1,3-diphenylpropenes 1 (0.1 mmol), nitrogen-based nucleophile 2 or 4 (0.12 mmol) and oxidant (0.14 mmol). The reaction mixture was stirred at r.t. for 2–5 h and then the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel to yield the desired product.