Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(12): 1854-1859
DOI: 10.1055/s-0035-1561975
DOI: 10.1055/s-0035-1561975
letter
Acid-Free Silver-Catalyzed Cross-Dehydrogenative Carbamoylation of Pyridines with Formamides
Further Information
Publication History
Received: 29 January 2016
Accepted after revision: 14 March 2016
Publication Date:
06 April 2016 (online)
Abstract
Primary pyridylcarboxamides are prevalent parent structures in bioactive molecules and have the apparent advantages over N-protected derivatives as synthetic building blocks. However, no practical methods have been developed for direct synthesis of this compound class from unfunctionalized pyridines. We herein present a general, safe, concise, acid-free, and highly selective method for the C2-carbamoylation of pyridines with unprotected formamide and N-methyl formamide through the cleavage of two C–H bonds.
Key words
pyridylcarboxamides - pyridines - C–H bonds functionalization - carbamoylation - formamidesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561975.
- Supporting Information
-
References and Notes
- 1a Haynes C, Kirkwood RC. Pestic. Sci. 1992; 35: 161
- 1b Regitano JB, Koskinen WC. J. Agric. Food Chem. 2008; 56: 5801
- 1c Babu YS, Rowland RS, Chand P, Kotian PL, El-Kattan Y, Niwas S. US Patent 6699994, 2004
- 2a Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
- 2b Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
- 2c Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL. Jr, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
- 2d Brunner H, Nuber B, Prommesberger M. J. Organomet. Chem. 1996; 523: 179
- 2e Mukkala V.-M, Liitti P, Hemmilae I, Takalo H, Matachescu C, Jouko K. Helv. Chim. Acta 1996; 79: 295
- 3a Wu X.-F, Neumann H, Beller M. Chem. Asian J. 2010; 5: 2168
- 3b Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2010; 16: 9750
- 3c Alsabeh PG, Stradiotto M, Neumann H, Beller M. Adv. Synth. Catal. 2012; 354: 3065
- 4 Xu T, Alper H. Tetrahedron Lett. 2013; 54: 5496
- 5a Takács A, Abreu AR, Peixoto AF, Pereira M, Kollár L. Synth. Commun. 2009; 39: 1534
- 5b Csajági C, Borcsek B, Niesz K, Kovács I, Székelhidi Z, Bajko Z, Urge L, Darvas F. Org. Lett. 2008; 10: 1589
- 5c Wu X, Larhed M. Org. Lett. 2005; 7: 3327
- 5d Wannberg J, Larhed M. J. Org. Chem. 2003; 68: 5750
- 5e Salvadori J, Balducci E, Zaza S, Petricci E, Taddei M. J. Org. Chem. 2010; 75: 1841
- 5f Cardullo F, Donati D, Merlo G, Paio A, Petricci E, Taddei M. Synlett 2009; 47
- 5g Martinelli JR, Martinelli DA, Watson DM, Freckmann M, Barder TE, Buchwald SL. J. Org. Chem. 2008; 73: 7102
- 5h Tambade PJ, Patil YP, Bhanushali MJ, Bhanage BM. Synthesis 2008; 2347
- 5i Martinelli JR, Clark TP, Watson DA, Munday RH, Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 8460
- 5j Appukkuttan P, Axelsson L, Van der Eycken E, Larhed M. Tetrahedron Lett. 2008; 49: 5625
- 5k Wu X, Wannberg J, Larhed M. Tetrahedron 2006; 62: 4665
- 5l Morera E, Ortar G. Tetrahedron Lett. 1998; 39: 2835
- 6 Gadge ST, Bhanage BM. Synlett 2014; 25: 85
- 7 Nielsen DU, Tanning RH, Lindhardt AT, Gogsig TM, Skrydstrup T. Org. Lett. 2011; 13: 4454
- 8 Suresh AS, Baburajan P, Ahmed M. Tetrahedron Lett. 2015; 56: 4864
- 9a Wan Y, Alterman M, Larhed M, Hallberg A. J. Comb. Chem. 2003; 5: 82
- 9b Schnyder A, Beller M, Mehltretter G, Nsenda T, Studer M, Indolese AF. J. Org. Chem. 2001; 66: 4311
-
10a Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 10b You S.-L, Xia J.-B. Top. Curr. Chem. 2010; 292: 165
-
10c Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 10d Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
-
10e Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
- 10f McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
- 10g Han W, Ofial AR. Synlett 2011; 1951
- 10h Bugaut X, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 7479
- 10i Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
- 10j Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 10k Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 11a He T, Li HH. J, Li PH, Wang L. Chem. Commun. 2011; 47: 8946
- 11b Peng JL, Liu LY, Hu ZW, Huang JB, Zhu Q. Chem. Commun. 2012; 48: 3772
- 11c Xing Q, Shi LJ, Lang R, Xia CG, Li FW. Chem. Commun. 2012; 48: 11023
- 11d Velavan A, Sumathi S, Balasubramanian KK. Eur. J. Org. Chem. 2013; 3148
- 12a Nakao Y. Synthesis 2011; 3209
- 12b Zhang BN, Zhou QZ, Chen RE, Jiang HJ. Chin. J. Org. Chem. 2012; 32: 1653
- 13 Yao B, Deng C.-L, Liu Y, Tang R.-Y, Zhang X.-G, Li J.-H. Chem. Commun. 2015; 51: 4097
- 14a Ding ST, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 9226
- 14b Muzart J. Tetrahedron 2009; 65: 8313
- 15a For a review, see: Collins KD, Glorius F. Acc. Chem. Res. 2015; 48: 619
- 15b Collins KD, Glorius F. Nat. Chem. 2013; 5: 597
- 16a Minisci F, Gardini GP, Galli R, Bertini F. Tetrahedron Lett. 1970; 11: 15
- 16b Langhals E, Langhals H, Rüchardt C. Liebigs Ann. Chem. 1982; 930
- 16c Martin I, Vares L, Kühn I, Claesson A. Acta Chem. Scand. 1995; 49: 230
- 16d Minisci F, Recupero F, Punta C, Gambarotti C, Antonietti F, Fontana F, Pedulli GF. Chem. Commun. 2002; 2496
- 16e Amrollahi Biyouki MA, Smith RA. J, Bedford JJ, Leader JP. Synth. Commun. 1998; 28: 3817
- 17 Han W, Mayer P, Ofial AR. Angew. Chem. Int. Ed. 2011; 50: 2178
- 18a Minisci F, Vismara E, Fontana F, Morini G, Serravalle M, Giordano C. J. Org. Chem. 1987; 52: 730
- 18b O’Hara F, Blackmond DG, Baran PS. J. Am. Chem. Soc. 2013; 135: 12122
- 19 General Procedure A 25 mL Schlenk flask was charged with AgNO3 (17.2 mg, 20 mol% Ag), K2S2O8 (408 mg, 1.5 mmol), and HCOONa (129 mg, 1.0 mmol) before standard cycles of evacuation and back-filling with dry and pure oxygen (three times). Corresponding pyridine 1m (40 μL, 0.5 mmol), formamide (2, 2 mL), and H2O (0.4 mL) were added successively. The mixture was stirred at 80 °C for the indicated time (monitored by TLC). At the end of the reaction, the reaction mixture was cooled to room temperature, poured into a sat. aq NaCl solution (15 mL), and extracted with EtOAc (3 × 15 mL). The organic phases were combined, and the volatile components were evaporated in a rotary evaporator. The residue was purified by flash column chromatography on silica gel (eluent: PE–EtOAc–Et3N) to afford the corresponding product 3m as white solid (57 mg, 94%); mp 102–103 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.62 (m, 1 H), 8.11 (br s, 1 H), 8.06 (dt, J = 7.6, 0.8 Hz, 1 H), 8.0 (td, J = 7.6, 1.6 Hz, 1 H), 7.64 (br s, 1 H), 7.61–7.57 (m, 1 H) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 166.5, 150.7, 148.9, 138.1, 126.9, 122.4 ppm.
- 20 Wen P, Li YM, Zhou K, Ma C, Lan XB, Ma CW, Huang GS. Adv. Synth. Catal. 2012; 354: 2135
- 21 Mcgill CK, Rappa A. Adv. Heterocycl. Chem. 1988; 44: 1
- 22a Fier PS, Hartwig JF. Science 2013; 342: 956
- 22b Fier PS, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 10139
For a few examples of the use of CO and ammonia in palladium-catalyzed carbonylation of aryl halides, see:
For recent reviews and highlights on oxidative cross dehydrogenative couplings, see:
For recent reviews on direct C–H functionalization of unprotected pyridines, see:
For recent reviews on direct activation of protected formamide C–H bond, see:
For studies on the solvent effect in the α and γ regioselectivity of pyridines, see: