Synthesis 2015; 47(17): 2641-2646
DOI: 10.1055/s-0034-1380752
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Carbonylative Synthesis of N-Benzoylindoles with Mo(CO)6 as the Carbon Monoxide Source

Xiao-Feng Wu*
a   Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou Province, P. R. of China   Email: xiao-feng.wu@catalysis.de
b   Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
,
Stefan Oschatz
b   Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
c   Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
,
Muhammad Sharif
b   Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
,
Peter Langer*
b   Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
c   Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
› Author Affiliations
Further Information

Publication History

Received: 12 February 2015

Accepted after revision: 16 April 2015

Publication Date:
28 May 2015 (online)


Abstract

A mild and carbon monoxide gas-free palladium-catalyzed aminocarbonylation of indole has been developed for the synthesis of N-benzoylindoles. This method uses Mo(CO)6 as a convenient CO-precursor and BuPAd2 as the ligand. A number of substituents on the aryl bromide species is tolerated under the presented conditions and gave the desired products in up to excellent yields.

Supporting Information

 
  • References

    • 1a Sharma V, Kumar P, Pathak D. J. Heterocycl. Chem. 2010; 47: 491
    • 1b Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
  • 2 Chen F.-E, Huang J. Chem. Rev. 2005; 105: 4671
  • 3 Hart FD, Boardman PL. Br. Med. J. 1963; 2: 965
  • 4 Sim DS.-Y, Chong K.-W, Nge C.-E, Low Y.-Y, Sim K.-S, Kam T.-S. J. Nat. Prod. 2014; 77: 2504
  • 5 Dhanoa DS, Bagley SW, Chang RS. L, Lotti VJ, Chen TB, Kivlighn SD, Zingaro GJ, Siegl PK. S, Patchett AA, Greenlee WJ. J. Med. Chem. 1993; 36: 4230
  • 6 Dalpozzo R. Chem. Soc. Rev. 2015; 44: 742
  • 7 Yagil G. Tetrahedron 1967; 23: 2855
  • 8 Bordwell FG, Drucker GE, Fried HE. J. Org. Chem. 1981; 46: 632
  • 9 Laha JK, Cuny GD. J. Org. Chem. 2011; 76: 8477
  • 10 Cui H.-L, Feng X, Peng J, Lei J, Jiang K, Chen Y.-C. Angew. Chem. Int. Ed. 2009; 48: 5737
  • 11 Antilla JC, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 11684
  • 12 Old DW, Harris MC, Buchwald SL. Org. Lett. 2000; 2: 1403
  • 13 Weißgerber R. Ber. Dtsch. Chem. Ges. 1910; 43: 3520
  • 14 Quesnel JS, Arndtsen BA. J. Am. Chem. Soc. 2013; 135: 16841
  • 15 Bremner JB, Samosorn S, Ambrus JI. Synthesis 2004; 2653
  • 16 Ren W, Yamane M. J. Org. Chem. 2010; 75: 8410
    • 17a Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 17b Wu X.-F, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
  • 18 Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
  • 20 Gøgsig TM, Taaning RH, Lindhardt AT, Skrydstrup T. Angew. Chem. Int. Ed. 2012; 51: 798
  • 21 Odell LR, Russo F, Larhed M. Synlett 2012; 23: 685
  • 22 Wu X.-F, Oschatz S, Sharif M, Flader A, Krey L, Beller M, Langer P. Adv. Synth. Catal. 2013; 355: 3581
    • 23a Zapf A, Beller M. Chem. Commun. 2005; 431
    • 23b Klaus S, Neumann H, Zapf A, Strübing D, Hübner S, Almena J, Riermeier T, Groß P, Sarich M, Krahnert W.-R, Rossen K, Beller M. Angew. Chem. Int. Ed. 2006; 45: 154
  • 24 Wannberg J, Larhed M. J. Org. Chem. 2003; 68: 5750
  • 25 Wu X.-F, Oschatz S, Sharif M, Beller M, Langer P. Tetrahedron 2014; 70: 23