RSS-Feed abonnieren
DOI: 10.1055/s-0032-1327380
p53-regulierende Signaltransduktionskaskaden als Ziele für eine personalisierte Krebstherapie
p53-regulating pathways as targets for personalized cancer therapyPublikationsverlauf
24. August 2012
23. November 2012
Publikationsdatum:
08. Januar 2013 (online)
Zusammenfassung
Der Tumorsuppressor p53 agiert nach Aktivierung durch verschiedene Upstream Signalwege als Transkriptionsfaktor, der eine Vielzahl von Zielgenen aktiviert. Zwei wesentliche Gruppen von p53 Zielgenen können unterschieden werden. Solche deren Funktion die Etablierung und Aufrechterhaltung von Zellzyklus Checkpoints ist und solche, die die Induktion des apoptotischen Zelltodes bewirken. Eine entscheidende Rolle in diesem zellulären Entscheidungsprozess spielt sicherlich der Schweregrad der genotoxischen Läsion. Die Art der zellulären Reaktion auf DNA Schädigung ist als ein Kontinuum zu sehen, welches von einem Zellzyklusarrest bis hin zum apoptotischen Zelltod reicht und abhängig ist vom Schweregrad des Schadens. Welche molekularen Mechanismen die Entscheidung zwischen Zellzyklusarrest und Apoptose treffen ist bisher weitestgehend unklar. Es ist dabei aus therapeutischer Sicht hochinteressant, diese Mechanismen aufzudecken, da die Induktion von p53-getriebener Apoptose in der Krebstherapie großen therapeutischen Nutzen birgt. Andererseits birgt die Induktion eines p53-abhängigen Zellzykluarrests nach DNA-schädigender Chemotherapie die Gefahr von Resistenzbildungen, da die Tumorzellen durch den Zellzyklusarrest Zeit zur DNA Reparatur gewinnen. In diesem Übersichtsartikel fassen wir die aktuellen Entwicklungen im Bezug auf p53-regulierende Mechanismen zusammen und geben einen Ausblick auf aktuell in Entwicklung und klinischer Testung befindliche therapeutische Ansätze zur Regulierung der p53 Antwort.
Abstract
The tumor suppressor p53 acts as a transcription factor downstream of many different stress-induced signaling pathways. Two major groups of p53-controlled genes can be distinguished. Those that mediate the initiation and maintenance of cell cycle checkpoints, and those driving apoptosis. An important determinant of the cellular reaction to DNA damage is the degree of genotoxic stress. The type of cellular response, which ranges from cell cycle arrest to apoptosis depends to a large extend on the severity of the genotoxic lesion. It remains largely unclear which molecular mechanisms govern the cellular decision between p53-driven cell cycle arrest and apoptosis. From a therapeutic perspective, this cellular decision is of utmost importance, as p53-driven apoptosis is therapeutically desired, when treating a malignant disease with DNA-damaging chemotherapy. However, a p53-driven cell cycle arrest might promote chemotherapy resistance, as it allows the tumor cells time to repair genotoxic lesions prior to the next cell division. Here, we summarize recent advances in our understanding of the molecular mechanisms controlling the functional outcome of p53 signaling. We further provide an outlook on the potential development of pharmacological interventions targeting the p53-regulating machinery to promote p53-driven apoptosis, while repressing p53-dependent cell cycle checkpoints.
-
Literatur
- 1 Boucas J, Höpker K, Chen S et al. Posttranscriptional regulation of gene expression – adding another layer of complexity to the DNA damage response. Front Genet 2012; 3: 159
- 2 Brown EJ, Baltimore D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 2000; 14: 397-402
- 3 Bruno T, De Nicola F, Iezzi S et al. Che-1 phosphorylation by ATM/ATR and Chk2 kinases activates p53 transcription and the G2/M checkpoint. Cancer Cell 2006; 10: 473-486
- 4 Bulavin DV, Higashimoto Y, Popoff IJ et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 2001; 411: 102-107
- 5 D'Orazi G, Cecchinelli B, Bruno T et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 2002; 4: 11-19
- 6 Das S, Raj L, Zhao B et al. Hzf Determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 2007; 130: 624-637
- 7 Di Stefano V, Rinaldo C, Sacchi A et al. Homeodomain-interacting protein kinase-2 activity and p53 phosphorylation are critical events for cisplatin-mediated apoptosis. Exp Cell Res 2004; 293: 311-320
- 8 Dohner H, Stilgenbauer S, Benner A et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910-1916
- 9 Fedier A, Schlamminger M, Schwarz VA et al. Loss of atm sensitises p53-deficient cells to topoisomerase poisons and antimetabolites. Ann Oncol 2003; 14: 938-945
- 10 Hirao A, Cheung A, Duncan G et al. Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol Cell Biol 2002; 22: 6521-6532
- 11 Hopker K, Hagmann H, Khurshid S et al. AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis. EMBO J 2012; 31: 3961-3975
- 12 Jiang H, Reinhardt HC, Bartkova J et al. The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 2009; 23: 1895-1909
- 13 Kotlyarov A, Neininger A, Schubert C et al. MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1999; 1: 94-97
- 14 Lam MH, Liu Q, Elledge SJ et al. Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 2004; 6: 45-59
- 15 Liu Q, Guntuku S, Cui XS et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 2000; 14: 1448-1459
- 16 Maris JM, Hogarty MD, Bagatell R et al. Neuroblastoma. Lancet 2007; 369: 2106-2120
- 17 Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 2006; 127: 1323-1334
- 18 Mukhopadhyay UK, Senderowicz AM, Ferbeyre G. RNA silencing of checkpoint regulators sensitizes p53-defective prostate cancer cells to chemotherapy while sparing normal cells. Cancer Res 2005; 65: 2872-2881
- 19 Oda K, Arakawa H, Tanaka T et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 2000; 102: 849-862
- 20 Pistritto G, Puca R, Nardinocchi L et al. HIPK2-induced p53Ser46 phosphorylation activates the KILLER/DR5-mediated caspase-8 extrinsic apoptotic pathway. Cell Death Differ 2007; 14: 1837-1839
- 21 Puca R, Nardinocchi L, Givol D et al. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene 2010; 29: 4378-4387
- 22 Raman M, Earnest S, Zhang K et al. TAO kinases mediate activation of p38 in response to DNA damage. EMBO J 2007; 26: 2005-2014
- 23 Reinhardt HC, Aslanian AS, Lees JA et al. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 2007; 11: 175-189
- 24 Reinhardt HC, Cannell IG, Morandell S et al. Is post-transcriptional stabilization, splicing and translation of selective mRNAs a key to the DNA damage response?. Cell Cycle 2011; 10
- 25 Reinhardt HC, Jiang H, Hemann MT et al. Exploiting synthetic lethal interactions for targeted cancer therapy. Cell Cycle 2009; 8: 3112-3119
- 26 Reinhardt HC, Schumacher B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 2012; 28: 128-136
- 27 Reinhardt HC, Yaffe MB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 2009; 21: 245-255
- 28 Samuels-Lev Y, O'Connor DJ, Bergamaschi D et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 2001; 8: 781-794
- 29 Secchiero P, Bosco R, Celeghini C et al. Recent advances in the therapeutic perspectives of Nutlin-3. Curr Pharm Des 17: 569-577
- 30 Skowronska A, Parker A, Ahmed G et al. Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom Leukemia Research Fund Chronic Lymphocytic Leukemia 4 Trial. J Clin Oncol 2012; DOI: DOI: 10.1200/JCO.2011.41.0852.
- 31 Syljuasen RG, Sorensen CS, Hansen LT et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 2005; 25: 3553-3562
- 32 Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006; 6: 909-923
- 33 Vassilev LT, Vu BT, Graves B et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844-848
- 34 Ventura A, Kirsch DG, McLaughlin ME et al. Restoration of p53 function leads to tumour regression in vivo. Nature 2007; 445: 661-665
- 35 Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408: 307-310
- 36 Wang X, Jiang X. Mdm2 and MdmX partner to regulate p53. FEBS Lett 2012; 586: 1390-1396
- 37 Xu Y, Ashley T, Brainerd EE et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 1996; 10: 2411-2422
- 38 Xue W, Zender L, Miething C et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445: 656-660