Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2012; 44(23): 3623-3632
DOI: 10.1055/s-0032-1317507
DOI: 10.1055/s-0032-1317507
paper
Coupling Reaction of Magnesium Alkylidene Carbenoids with α-Sulfonylallyllithiums: An Efficient Route to Multi-Substituted Vinylallenes
Further Information
Publication History
Received: 30 August 2012
Accepted after revision: 06 October 2012
Publication Date:
24 October 2012 (online)
Abstract
A variety of vinylallenes were successfully synthesized from 1-chlorovinyl p-tolyl sulfoxides and allyl or vinyl sulfones. Allyl and vinyl sulfones served as α-sulfonylallyllithium sources were prepared from carbonyl compounds in three or four steps in good overall yields. The coupling reaction of α-sulfonylallyllithiums with magnesium alkylidene carbenoids, which were generated from 1-chlorovinyl p-tolyl sulfoxides and isopropylmagnesium chloride, afforded multi-substituted vinylallenes in up to 88% yield.
Key words
vinylallenes - magnesium alkylidene carbenoids - allyl sulfones - vinyl sulfones - 1-chlorovinyl p-tolyl sulfoxides - couplingSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1a Okamura WH. Acc. Chem. Res. 1983; 16: 81
- 1b Okamura WH, Curtin ML. Synlett 1990; 1
- 1c Hashmi AS. K In Organic Synthesis Highlights V . Schmalz H.-G, Wirth T. Wiley-VCH; Weinheim: 2003: 56
- 1d Murakami M, Matsuda T In Modern Allene Chemistry . Vol. 2. Krause N, Hashmi AS. K. Wiley-VCH; Weinheim: 2004: 727
- 2a Regás D, Afonso MM, Palenzuela JA. Synthesis 2004; 757
- 2b Souto JA, López CS, Faza NO, Alvarez R, de Lera AR. Org. Lett. 2005; 7: 1565
- 2c Lee PH, Lee K, Kang Y. J. Am. Chem. Soc. 2006; 128: 1139
- 2d Ruiz JM, Regás D, Afonso MM, Palenzuela JA. J. Org. Chem. 2008; 73: 7246
- 2e Souto JA, Pérez M, López CS, Álvarez R, Torrado A, de Lera AR. J. Org. Chem. 2010; 75: 4453
- 2f Wu Y.-K, West FG. J. Org. Chem. 2010; 75: 5410
- 3a Egenburg IZ. Russ. Chem. Rev. 1978; 47: 470
- 3b Gore J, Dulcere JP. J. Chem. Soc., Chem. Commun. 1972; 866
- 3c Baudouy R, Delbecq F, Gore J. J. Organomet. Chem. 1979; 177: 39
- 3d Tolstikov GA, Romanova TY, Kuchin AV. J. Organomet. Chem. 1985; 285: 71
- 3e Reich HJ, Eisenhart EK, Whipple WL, Kelly MJ. J. Am. Chem. Soc. 1988; 110: 6432
- 3f Purpura M, Krause N. Eur. J. Org. Chem. 1999; 267
- 3g Krause N, Purpura M. Angew. Chem. Int. Ed. 2000; 39: 4355
- 4a Ogasawara M, Fan L, Ge Y, Takahashi T. Org. Lett. 2006; 8: 5409
- 4b Chedid RB, Brüemmer M, Wibbeling B, Fröehlich R, Hoppe D. Angew. Chem. Int. Ed. 2007; 46: 3131
- 4c Ogata A, Nemoto M, Kobayashi K, Tsubouchi A, Takeda T. Chem.–Eur. J. 2007; 13: 1320
- 4d Chen Z.-S, Duan X.-H, Wu L.-Y, Ali S, Ji K.-G, Zhou P.-X, Liu X.-Y, Liang Y.-M. Chem.–Eur. J. 2011; 17: 6918
- 4e Akpinar GE, Kuş M, Uçüncü M, Karakuş E, Artok L. Org. Lett. 2011; 13: 748
- 5a Satoh T. Chem. Rec. 2004; 3: 329
- 5b Satoh T. Chem. Soc. Rev. 2007; 36: 1561
- 5c Satoh T. Heterocycles 2012; 85: 1
- 5d Satoh T In The Chemistry of Organomagnesium Compounds . Rappoport Z, Marek I. Wiley; Chichester: 2008: 717
- 6a Satoh T, Takano K, Ota H, Someya H, Matsuda K, Koyama M. Tetrahedron 1998; 54: 5557
- 6b Satoh T, Sakamoto T, Watanabe M. Tetrahedron Lett. 2002; 43: 2043
- 6c Satoh T, Sakamoto T, Watanabe M, Takano K. Chem. Pharm. Bull. 2003; 51: 966
- 6d Watanabe M, Nakamura M, Satoh T. Tetrahedron 2005; 61: 4409
- 6e Satoh T, Ogino Y, Ando K. Tetrahedron 2005; 61: 10262
- 6f Sakurada J, Satoh T. Tetrahedron 2007; 63: 3806
- 6g Mori N, Obuchi K, Katae T, Sakurada J, Satoh T. Tetrahedron 2009; 65: 3509
- 6h Satoh T, Kaneta H, Matsushima A, Yajima M. Tetrahedron Lett. 2009; 50: 6280
- 7 Ishigaki M, Inumaru M, Satoh T. Tetrahedron Lett. 2011; 52: 5563
- 8a De Lima C, Julia M, Verpeaux JN. Synlett 1992; 133
- 8b Lavallo V, Frey GD, Kousar S, Donnadieu B, Bertrand G. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 13569
- 9a Simpkins NS. Tetrahedron 1990; 46: 6951
- 9b Katritzky AR, Piffl M, Lang H, Anders E. Chem. Rev. 1999; 99: 665
- 9c Hirata T, Sasada Y, Ohtani T, Asada T, Kinoshita H, Senda H, Inomata K. Bull. Chem. Soc. Jpn. 1992; 65: 75
- 10a Xiao X.-Y, Park S.-K, Prestwich GD. J. Org. Chem. 1988; 53: 4869
- 10b Satoh T, Takano K. Tetrahedron 1996; 52: 2349
- 11 Secondary Grignard reagents are appropriate for the sulfoxide–magnesium exchange reaction. Primary Grignard reagents can react with the resulting magnesium alkylidene carbenoids to give undesirable primary alkyl-substituted alkenes, and tertiary Grignard reagents are inactive against the sulfoxides.
- 12a Campbell RV. M, Crombie L, Findley DA. R, King RW, Pattenden G, Whiting DA. J. Chem. Soc., Perkin Trans. 1 1975; 897
- 12b Julia M, Uguen D. Bull. Soc. Chim. Fr. 1976; 513
- 13 Generation of magnesium alkylidene carbenoids from β-monosubstituted 1-chlorovinyl p-tolyl sulfoxides resulted in a formation of alkynes via the Fritsch–Buttenberg–Wiechell rearrangement; see ref. 6c.
- 14 Kimura T, Satoh T. J. Organomet. Chem. 2012; 715: 1
- 15 For the geometrical chemistry of exchange reaction and substitution reaction; see refs. 6e and 14.
- 16a Satoh T, Ota H. Tetrahedron 2000; 56: 5113
- 16b Satoh T, Kawashima T, Takahashi S, Sakai K. Tetrahedron 2003; 59: 9599
- 17a Lewis FW, McCabe TC, Grayson DH. Tetrahedron 2011; 67: 7517
- 17b Ballini R, Marcantoni E, Petrini M. Tetrahedron 1989; 45: 6791
- 17c Felpin F.-X, Landais Y. J. Org. Chem. 2005; 70: 6441
- 18a Inomata K, Sasaoka S, Kobayashi T, Tanaka Y, Igarashi S, Otani T, Kinoshita H, Kotake H. Bull. Chem. Soc. Jpn. 1987; 60: 1767
- 18b Ono N, Tamura R, Eto H, Hamamoto I, Nakatsuka T, Hayami J, Kaji A. J. Org. Chem. 1983; 48: 3678
- 19 Posner GH, Weitzberg M, Hamill TG, Asirvatham E, He C.-h, Clardy J. Tetrahedron 1986; 42: 2919
For recent examples, see:
For recent examples of synthesis of vinylallenes, see: