Synthesis 2012; 44(23): 3671-3677
DOI: 10.1055/s-0032-1317497
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Chromanes and 4H-Chromenes: Exploring the Oxidation of 2H-Chromenes and Dihydro-1-benzoxepines by Hypervalent Iodine(III)

Anees Ahmad
Instituto de Química - Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CP 26077, CEP 05513-970 São Paulo SP, Brazil   Fax: +55(113)8155579   Email: luizfsjr@iq.usp.br
,
Luiz F. Silva Jr.*
Instituto de Química - Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CP 26077, CEP 05513-970 São Paulo SP, Brazil   Fax: +55(113)8155579   Email: luizfsjr@iq.usp.br
› Author Affiliations
Further Information

Publication History

Received: 09 August 2012

Accepted: 02 October 2012

Publication Date:
17 October 2012 (online)


Abstract

The reaction of various oxygen-containing benzo-fused cycloalkenes were studied with the hypervalent iodine reagent hydroxy(tosyloxy)iodo]benzene­ [PhI(OH)OTs, HTIB]. 2H-Chromene and 4-methyl-2H-chromene resulted in substituted 4H-chromene and cis-3,4-dialkoxy-4-methyl-3,4-dihydro-2H-chromenes, respectively. Ring contraction to chromanes and benzofurans was observed for dihydrobenzoxepines and 2,2-dimethyl-2H-chromenes, respectively.

Supporting Information

 
  • References

    • 1a Rial E, Rodriguez-Sanchez L, Aller P, Guisado A, Mar Gonzalez-Barroso M, Gallardo-Vara E, Redondo-Horcajo M, Castellanos E, Fernandez de la Pradilla R, Viso A. Chem. Biol. 2011; 18: 264
    • 1b Alvey L, Prado S, Saint-Joanis B, Michel S, Koch M, Cole SI, Tillequin F, Janin YL. Eur. J. Med. Chem. 2009; 44: 2497
    • 1c Koyama H, Miller DJ, Boueres JK, Desai RC, Jones AB, Berger JP, MacNaul KL, Kelly LJ, Doebber TW, Wu MS, Zhou GC, Wang PR, Ippolito MC, Chao YS, Agrawal AK, Franklin R, Heck JV, Wright SD, Moller DE, Sahoo SP. J. Med. Chem. 2004; 47: 3255
    • 1d Tan Q, Blizzard TA, Morgan JD, Birzin ET, Chan WD, Yang YT, Pai LY, Hayes EC, DaSilva CA, Warrier S, Yudkovitz J, Wilkinson HA, Sharma N, Fitzgerald PM. D, Li S, Colwell L, Fisher JE, Adamski S, Reszka AA, Kimmel D, DiNinno F, Rohrer SP, Freedman LP, Schaeffer JM, Hammond ML. Bioorg. Med. Chem. Lett. 2005; 15: 1675
    • 2a Ito C, Itoigawa M, Kanematsu T, Ruangrungsi N, Mukainaka T, Tokuda H, Nishino H, Furukawa H. Phytochemistry 2003; 64: 1265
    • 2b Kemnitzer W, Drewe J, Jiang S, Zhang H, Crogan-Grundy C, Labreque D, Bubenick M, Attardo G, Denis R, Lamothe S, Gourdeau H, Tseng B, Kasibhatla S, Cai SX. J. Med. Chem. 2008; 51: 417
    • 2c Gao M, Wang M, Miller KD, Hutchins GD, Zheng Q.-H. Appl. Radiat. Isot. 2010; 68: 110
    • 2d Rukachaisirikul V, Kamkaew M, Sukavisit D, Phongpaichit S, Sawangchote P, Taylor WC. J. Nat. Prod. 2003; 66: 1531
    • 3a Cannon JS, Olson AC, Overman LE, Solomon NS. J. Org. Chem. 2012; 77: 1961
    • 3b Lu D, Li Y, Gong Y. J. Org. Chem. 2010; 75: 6900
    • 3c Samanta D, Kargbo RB, Cook GR. J. Org. Chem. 2009; 74: 7183
    • 3d Lakshmi NV, Kiruthika SE, Perumal PT. Synlett 2011; 1389
    • 3e Malakar CC, Schmidt D, Conrad J, Beifuss U. Org. Lett. 2011; 13: 1972

      For books, see:
    • 4a Varvoglis A. Hypervalent Iodine in Organic Synthesis . Academic Press; San Diego: 1996
    • 4b Hypervalent Iodine Chemistry . In Topics in Current Chemistry . Wirth T. Springer; Heidelberg: 2003. Vol. 224.

    • For reviews see refs 4c–e:
    • 4c Silva LF. Jr, Olofsson B. Nat. Prod. Rep. 2011; 28: 1722
    • 4d Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 4e Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052

    • For recent examples see refs 4f–j:
    • 4f Farid U, Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462
    • 4g Souto JA, Zian D, Muniz K. J. Am. Chem. Soc. 2012; 134: 7242
    • 4h Uyanik M, Okamoto H, Yasui T, Ishihara K. Science (Washington, DC, U. S.) 2010; 328: 1376
    • 4i Ochiai M, Miyamoto K, Kaneaki T, Hayashi S, Nakanishi W. Science (Washington, DC, U. S.) 2011; 332: 448
    • 4j Skucas E, MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 9090
    • 5a Koser GF, Wettach RH, Troup JM, Frenz BA. J. Org. Chem. 1976; 41: 3609
    • 5b Koser GF. Aldrichimica Acta 2001; 34: 89
    • 6a Nabana T, Togo H. J. Org. Chem. 2002; 67: 4362
    • 6b Koser GF, Relenyi AG, Kalos AN, Rebrovic L, Wettach RH. J. Org. Chem. 1982; 47: 2487
  • 7 Farooq U, Schaefer S, Shah A.-u.-HA, Freudendahl DM, Wirth T. Synthesis 2010; 1023
  • 8 Xie YY, Chen ZC. Synth. Commun. 2002; 32: 1875
    • 9a Justik MW, Koser GF. Tetrahedron Lett. 2004; 45: 6159
    • 9b Justik MW, Koser GF. Molecules 2005; 10: 217
  • 10 Morimoto K, Nakae T, Yamaoka N, Dohi T, Kita Y. Eur. J. Org. Chem. 2011; 6326
  • 11 Siqueira FA, Ishikawa EE, Fogaca A, Faccio AT, Carneiro VM. T, Soares RR. S, Utaka A, Tebeka IR. M, Bielawski M, Olofsson B, Silva LF. Jr. J. Braz. Chem. Soc. 2011; 22: 1795
  • 12 Silva LF. Jr, Siqueira FA, Pedrozo EC, Vieira FY. M, Doriguetto AC. Org. Lett. 2007; 9: 1433
  • 13 For a review concerning iodine(III)-mediated ring contraction, see: Silva LF. Jr. Molecules 2006; 11: 421
  • 14 Bianco GG, Ferraz HM. C, Costa AM, Costa-Lotufo LV, Pessoa C, de Moraes MO, Schrems MG, Pfaltz A, Silva LF. Jr. J. Org. Chem. 2009; 74: 2561
  • 15 Kameyama M, Siqueira FA, Garcia-Mijares M, Silva LF. Jr, Silva MT. A. Molecules 2011; 16: 9421
  • 16 Sosnovskikh VY, Usachev BI, Sevenard DV, Roschenthaler GV. J. Org. Chem. 2003; 68: 7747
  • 17 Silva LF. Jr, Vasconcelos RS, Nogueira MA. Org. Lett. 2008; 10: 1017

    • Some additional tests for 5a:
    • 18a MeOH, BF3·OEt2, r.t., 2.5 h; 6a (27%) and 7a (23%).
    • 18b TFE, BF3·OEt2, r.t., 30 min; 10a (23%).
    • 18c MeCN, 0 °C; complex mixture.
    • 18d HFIP–CH2Cl2 (1:4), 0 °C; complex mixture.
    • 18e HFIP, 0 °C; unstable product.
    • 18f HFIP, BF3·OEt2, 0 °C; no prominent spot on TLC.
    • 18g CH2Cl2, 0 °C; complex mixture.
    • 18h HFIP–CH2Cl2 (1:4), H2O (22 equiv) 0 °C, NaBH4; starting material recovered.
  • 19 Rebrovic L, Koser GF. J. Org. Chem. 1984; 49: 2462

    • Some additional tests for 5b:
    • 20a MeOH, 0 °C, 40 min; 4-methoxy-4H-thiochromene (6b) (29%).
    • 20b TMOF, 0 °C, 30 min; 4-methoxy-4H-thiochromene (6b) (38%).
    • 20c TFE 0 °C; complex mixture.
    • 20d HTIB, HFIP–CH2Cl2 (1:4), H2O (22 equiv) 0 °C, NaBH4; starting material recovered.
  • 21 Ferraz HM. C, Carneiro VM. T, Silva LF. Jr. Synthesis 2009; 385

    • Some additional tests for 5f:
    • 22a TFE, 0 °C; complex mixture.
    • 22b MeCN, 0 °C; no prominent spot on TLC.
    • 22c DMF, 0 °C; starting material recovered.
    • 22d HFIP, 0 °C; no prominent spot on TLC.
    • 22e PhI(OAc)2 (1.1 equiv), MeOH, 0 °C; starting material recovered.
    • 22f PhI(OAc)2 (1.1 equiv), MeOH, BF3·OEt2, 0 °C; 18f (12%).
    • 22g TMOF, 0 °C; 18f (13%).

      Some additional tests for 5g:
    • 23a TFE, 0 °C; complex mixture.
    • 23b MeCN, 0 °C; complex mixture.
    • 23c HFIP–CH2Cl2 (1:4), 0 °C; complex mixture.
  • 24 Barrett I, Meegan MJ, Hughes RB, Carr M, Knox AJ. S, Artemenko N, Golfis G, Zisterer DM, Lloyd DG. Bioorg. Med. Chem. 2008; 16: 9554
  • 25 Zhu M, Kim MH, Lee S, Bae SJ, Kim SH, Park SB. J. Med. Chem. 2010; 53: 8760