Synthesis 2012; 44(23): 3661-3670
DOI: 10.1055/s-0032-1316804
paper
© Georg Thieme Verlag Stuttgart · New York

Investigations Concerning the Syntheses of TADDOL-Derived Secondary Amines and Their Use To Access Novel Chiral Organocatalysts

Katharina Gratzer
Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria   Fax: +43(732)24688747   Email: Mario.waser@jku.at
,
Mario Waser*
Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria   Fax: +43(732)24688747   Email: Mario.waser@jku.at
› Author Affiliations
Further Information

Publication History

Received: 06 September 2012

Accepted after revision: 24 September 2012

Publication Date:
16 October 2012 (online)


Abstract

A structurally carefully diversified library of novel TADDOL-derived chiral secondary amines was synthesized and investigated for their applicability to obtain new organocatalysts like chiral Lewis bases and chiral phase-transfer catalysts. The scope and limitations of the developed syntheses routes to access these catalysts as well their catalytic performance in different benchmark reactions were systematically investigated. The most powerful of the catalysts prepared was found to be highly useful for the phase-transfer catalyzed α-alkylation of glycine Schiff base (high yields and up to 93% ee).

Supporting Information

 
  • References


    • For comprehensive overviews about organocatalysis, see:
    • 1a Berkessel A, Gröger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. Wiley-VCH; Weinheim: 2005
    • 1b Dalko I. Enantioselective Organocatalysis . Wiley-VCH; Weinheim: 2007
    • 1c Waser M In Progress in the Chemistry of Organic Natural Products . Vol. 96. Kinghorn A.-D, Falk H, Kobayashi J. Springer; Berlin: 2012

      For reviews on TADDOLs, see:
    • 2a Seebach D, Beck AK, Heckel A. Angew. Chem. Int. Ed. 2001; 40: 92
    • 2b Pellissier H. Tetrahedron 2008; 64: 10279
  • 3 For a recent report describing the syntheses of tartaric acid derived 1,4-ditertiary carbinols, see: Budragchaa T, Roller A, Widhalm M. Synthesis 2012; 44: 3238

    • For the application of TADDOLs and derived organocatalysts as chiral H-bonding donors or Brønstedt acids, see:
    • 4a Huang Y, Unni AK, Thadani AN, Rawal VH. Nature 2003; 424: 146
    • 4b McGilvra JD, Unni AK, Modi K, Rawal VH. Angew. Chem. Int. Ed. 2006; 45: 6130
    • 4c Akiyama T, Saitoh Y, Morita H, Fuchibe K. Adv. Synth. Catal. 2008; 347: 1523
    • 4d Lauber M, Fröhlich R, Paradies J. Synthesis 2012; 44: 3209
    • 4e Seebach D, Beck AK, Bichsel H.-U, Pichota A, Sparr C, Wünsch R, Schweizer WB. Helv. Chim. Acta 2012; 95: 1303

      For TADDOLs as PTCs, see:
    • 5a Belokon YN, Kochetkov KA, Churkina TD, Ikonnikov NS, Chesnokov AA, Larionov OV, Singh I, Parmar VS, Vyskocil S, Kagan HB. J. Org. Chem. 2000; 65: 7041
    • 5b Belokon YN, Kochetkov KA, Churkina TD, Ikonnikov NS, Chesnokov AA, Larionov OV, Parmar VS, Kumar R, Kagan HB. Tetrahedron: Asymmetry 1998; 9: 851

      For tartaric acid derived PTCs, see:
    • 6a Shibuguchi T, Fukuta Y, Akachi Y, Sekine A, Ohshima T, Shibasaki M. Tetrahedron Lett. 2002; 43: 9539
    • 6b Ohshima T, Gnanadesikan V, Shibuguchi T, Fukuta Y, Nemoto T, Shibasaki M. J. Am. Chem. Soc. 2003; 125: 11206
    • 6c Ohshima T, Shibuguchi T, Fukuta Y, Shibasaki M. Tetrahedron 2004; 60: 7743
    • 6d Okada A, Shibuguchi T, Ohshima T, Masu H, Yamaguchi K, Shibasaki M. Angew. Chem. Int. Ed. 2005; 44: 4564
    • 6e Shibuguchi T, Mihara H, Kuramochi A, Ohshima T, Shibasaki M. Chem.–Asian. J. 2007; 2: 794
  • 7 Waser M, Haunschmidt M, Himmelsbach M. Monatsh. Chem. 2010; 141: 1347
  • 8 Waser M, Gratzer K, Herchl R, Müller N. Org. Biomol. Chem. 2012; 10: 251
    • 9a Seebach D, Beck AK, Hayakawa M, Jaeschke G, Kühnle FN. M, Nageli I, Pinkerton AB, Rheiner PB, Duthaler RO, Rothe PM, Weigand W, Wünsch R, Dick S, Nesper R, Wörle M, Gramlich V. Bull. Soc. Chim. Fr. 1997; 134: 315
    • 9b Seebach D, Hayakawa M, Sakaki J, Schweizer WB. Tetrahedron 1993; 49: 1711
    • 9c Beck AK, Bastani B, Plattner DA, Petter W, Seebach D, Braunschweiger H, Gysi P, Lavecchia L. Chimia 1991; 45: 238
    • 9d Pichota A, Gramlich V, Beck AK, Seebach D. Helv. Chim. Acta 2012; 95: 1239
    • 9e Pichota A, Gramlich V, Bichsel H.-U, Styner T, Knöpfel T, Wünsch R, Hintermann T, Schweizer WB, Beck AK, Seebach D. Helv. Chim. Acta 2012; 95: 1273

      For reviews on chiral Lewis base catalysis, see:
    • 10a Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
    • 10b Denmark SE, Stavenger RA. Acc. Chem. Res. 2000; 33: 432

      For reviews about asymmetric phase-transfer catalysis, see:
    • 11a Maruoka K. Asymmetric Phase Transfer Catalysis . Wiley-VCH; Weinheim: 2008
    • 11b Maruoka K, Ooi T. Chem. Rev. 2003; 103: 3013
    • 11c O’Donnell MJ. Acc. Chem. Res. 2004; 37: 506
    • 11d Lygo B, Andrews BI. Acc. Chem. Res. 2004; 37: 518
    • 11e Hashimoto T, Maruoka K. Chem. Rev. 2007; 107: 5656
    • 11f Ooi T, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
  • 12 Weibel D. Ph.D. Dissertation . ETH; Zürich: 2003. Nr. 1529
  • 13 Due to the failed syntheses of catalysts 6, 10, and 12, the synthesis of phosphoramides 8 was not exhaustively investigated anymore after the failure of a few initial experiments.
  • 14 Seebach et al. coincidentally observed the formation of trityl derivatives upon treatment of dichloro compound 13 with diphenylamine or methylaniline: Seebach D, Pichota A, Beck AK, Pinkerton AB, Litz T, Karjalainen J, Gramlich V. Org. Lett. 1999; 1: 55
  • 15 Reetz MT, Chatzhosifidis I, Künzer H, Müller-Starke H. Tetrahedron 1983; 39: 961
  • 16 BH3·DMS in refluxing THF was the only other reducing agent that gave small amounts of 5aa (˂20%).
  • 17 p-Methoxy-substituted TADDOL gave elimination and Friedel–Crafts products in the chlorination step exclusively, whereas the m-methoxy one gave at least small amounts of the dichlorides, which then formed only Friedel–Crafts products, but not dinitrile under the Lewis acidic cyanation conditions.
  • 18 Synthesis of the TADDOL 2aa based sulfite 16aa was reported by Seebach et al. in ref. 9b.
  • 19 In these two cases it was necessary to use 5 equiv of TMSCN and 1 equiv SnCl4 to obtain the dicyanides in a reliable and reproducible manner.
  • 20 Using MeI, trace amounts of the targeted ammonium iodide could be detected by ESI-HRMS of the crude reaction mixture, but no product could be isolated.

    • For detailed investigations concerning the kinetics of SN2-type cyclization reactions, see:
    • 21a Freundlich H, Kroepelin H. Z. Physik. Chem. 1926; 122: 39
    • 21b Casadei MA, Galli C, Mandolini L. J. Am. Chem. Soc. 1984; 106: 1051
    • 22a Shirakawa S, Liu K, Ito H, Maruoka K. Chem. Commun. 2011; 47: 1515
    • 22b Kano T, Yamamoto A, Song S, Maruoka K. Chem. Commun. 2011; 47: 4358
    • 22c Shirakawa S, Terao SJ, He R, Maruoka K. Chem. Commun. 2011; 47: 10557
    • 22d Hashimoto T, Sakata K, Maruoka K. Adv. Synth. Catal. 2010; 352: 1653
    • 22e Lan Q, Wang X, Shirakawa S, Maruoka K. Org. Process Res. Dev. 2010; 14: 684
    • 22f Ooi T, Kameda M, Maruoka K. J. Am. Chem. Soc. 2003; 125: 5139
    • 22g Shirakawa S, Liu K, Maruoka K. J. Am. Chem. Soc. 2012; 134: 916
    • 22h Ooi T, Kameda M, Maruoka K. J. Am. Chem. Soc. 1999; 121: 6519
  • 23 This compound was not unambiguously proven by NMR analysis due to the presence of other by-products (maybe also due to the presence of other possible Stevens rearrangement products), but could be clearly identified by HRMS in the positive ion mode.
  • 24 Goncalves-Farbos M.-H, Vial L, Lacour J. Chem. Commun. 2008; 829
  • 25 For optimization of the reaction conditions and catalyst amount, please see the detailed tables in the Supporting Information and the preliminary results in our recent communication (ref. 8).
  • 26 We have also synthesized the corresponding 2-acetylnaph-thalene-based derivative, which performed slightly better (88% ee in the benchmark alkylation), but was even harder to obtain as the last steps were significantly lower yielding and vast amounts of difficult to remove impurities were formed.

    • For successful applications of acyclic TADDOL-backbone containing ligands in asymmetric catalysis, see:
    • 27a Teller H, Flügge S, Goddard R, Fürstner A. Angew. Chem. Int. Ed. 2010; 122: 1993
    • 27b Teller H, Fürstner A. Chem.–Eur. J. 2011; 17: 7764
  • 28 For detailed scope, see the tables in the Supporting Information and the preliminary results in our recent communication (ref. 8).
  • 29 For a recent example using cinchona-based PTCs, see: Yoo MS, Kim DG, Ha MW, Jew S, Park H, Jeong BS. Tetrahedron Lett. 2010; 51: 5601
  • 30 No background reaction was observed in the absence of the catalyst.
  • 31 Corey EJ, Xu F, Noe MC. J. Am. Chem. Soc. 1997; 119: 12414
  • 32 Also the use of more reactive p-nitrobenzaldehyde did not result in a better conversion.
    • 33a Weber E, Dörpinghaus N, Wimmer C, Stein Z, Krupitsky H, Goldberg I. J. Org. Chem. 1992; 57: 6825
    • 33b Voituriez A, Charette AB. Adv. Synth. Catal. 2006; 348: 2363
    • 33c Kelly TR, Cai X, Elliott EL, Grossmann G, Laurent P. Org. Lett. 2004; 6: 4953