Anästhesiol Intensivmed Notfallmed Schmerzther 2010; 45(9): 552-561
DOI: 10.1055/s-0030-1265746
Fachwissen
Intensivmedizin
© Georg Thieme Verlag Stuttgart · New York

Gerinnungsmanagement bei traumatisch bedingter Massivblutung – Empfehlungen der Arbeitsgruppe für perioperative Gerinnung der ÖGARI

Coagulation management in trauma-related massive bleeding. – Recommendations of the Task Force for Coagulation (AGPG) of the Austrian Society of Anesthesiology, Resuscitation and Intensive Care Medicine (ÖGARI)Dietmar Fries, Petra Innerhofer, Peter Perger, Manfred Gütl, Sabine Heil, Nikolaus Hofmann, Werner Kneifel, Ludwig Neuner, Thomas Pernerstorfer, Georg Pfanner, Herbert Schöchl, Bernhard Ziegler, Camillo Kölblinger, Sibylle Kozek-Langenecker
Further Information

Publication History

Publication Date:
13 September 2010 (online)

Zusammenfassung

Zu den Haupttodesursachen polytraumatisierter Patienten zählt der hämorrhagische Schock. Die „Trauma induzierte Koagulopathie“ (TIC) beschreibt eine Kombination aus Verlust von Gerinnungsfaktoren und Thrombozyten, Hämodilution (Dilutionskoagulopathie), Steigerung der Fibrinolyse sowie Hypothermie, Azidose und Hypokalzämie. Neue Erkenntnisse zur Pathophysiologie der TIC und der weit verbreitete Einsatz viskoelastischer Messmethoden haben während den letzten Jahren zur Entwicklung alternativer Behandlungskonzepte geführt. Ebenso wie für die bisher empfohlene Therapie mit Frischplasma und Thrombozytenkonzentraten sind derzeit auch für diese alternativen Konzepte keine Daten von großen randomisierten Studien verfügbar. Durch die zunehmende Verwendung Point-of-Care tauglicher viskoelastische Messverfahren können einzelne Faktorenmangelzustände jedoch schnell erkannt und zielgerichtet bei entsprechender klinischer Blutungsneigung mit Gerinnungsfaktoren-konzentraten behandelt werden.

Abstract

Even nowadays and at specialized centers, one of the leading causes of death is exsanguination. Trauma-induced coagulopathy (TIC) occuring with massive blood loss primarily results from loss of coagualtion factors and platelets and is aggravated by hemodilution. In addition, hyperfibrinolysis, hypothermia, acidosis and hypocalcaemia also contribute to the development of severe haemostatic derangement. During the past few years new insights into the pathophysiology of TIC and the widespread use of viscoelastic coagulation monitoring provoked the development of alternative treatment concepts. As for the previously recommended standard therapy using fresh frozen plasma and platelet concentrates also for alternative strategies no data from large prospective randomized studies are available until now, however, the evidence is growing favoring the use of coagulation factor concentrates guided by viscoelastic measurements.

Kernaussagen

  • Um einen ausreichenden Volumeneffekt zu erzielen, ist eine Kombination aus kristalloiden und kolloidalen Volumenersatzmitteln angezeigt.

  • Bereits bei klinischem Verdacht auf eine Hyperfibrinolyse ist eine antifibrinolytische Therapie angezeigt; Tranexamsäure in einer Dosis von 15–20 mg/kg kann eingesetzt werden.

  • Wird im Rahmen einer Massivblutung eine prokoagulatorische Substitutionstherapie durchgeführt, soll ein pH von > 7,2 mittels Puffertherapie angestrebt werden.

  • Bei Kalziumwerten unter 0,8–0,9 mmol/l sollte Kalziumglukonat (10–20 ml) oder Kalziumchlorid (5 ml) verabreicht werden.

  • Im Rahmen einer Massivtransfusion mit anhaltender aktiver Blutung sollten niedrige Transfusionstrigger vermieden und ein Hämoglobinwert von 8–10 g/dl angestrebt werden.

  • Laut Datenlage kann für Thrombozyten kein eindeutiger Transfusionstrigger definiert werden. Nach Meinung der Autoren sind bei Massivblutung Thrombozytenkonzentrate bei Werten unter 100 000 / μl indiziert.

  • Hohe Fibrinogenspiegel haben eine protektive Wirkung bezüglich perioperativer Blutverluste.

  • Steht kein Fibrinogenkonzentrat zur Verfügung, müssen Frischplasmen (mindestens 30 ml/kg) transfundiert werden.

  • Bei pathologischen Gerinnungstests und erhöhter Blutungsneigung wird die Gabe von PPSB (20–30 I.E./kg KG) empfohlen. Alternativ können Frischplasmen (mindestens 30 ml/kg) transfundiert werden. Als Sonderfall sind polytraumatisierte Patienten unter oraler Antikoagulantientherapie zu sehen. In diesen Fällen wird die Gabe von PPSB und Vitamin K an erster Stelle notwendig sein.

  • Bei einer FXIII-Aktivität < 60 % und anhaltender Blutung kann FXIII-Konzentrat eingesetzt werden. Alternativ kann Frischplasma transfundiert werden.

  • rFVIIa sollte bei Blutungen, die konventionell, chirurgisch oder interventionell radiologisch nicht sanierbar sind, oder bei Versagen einer umfassend durchgeführten Gerinnungstherapie in Erwägung gezogen werden.

  • Besteht eine relevante Gerinnungsstörung mit Transfusionspflichtigkeit und nachgewiesenen oder zu erwartenden Einzelfaktorenmangelzuständen, sollten diese zunächst mit Konzentraten ausgeglichen werden. Der Einsatz von Frischplasma wird erst bei Blutverlusten ≥ 150 % des totalen Blutvolumens mit einem zu erwartenden Mangel verschiedener Gerinnungsfaktoren empfohlen.

Weiteres Material zum Artikel

Literatur

  • 1 Martinowitz U, Michaelson M. Guidelines for the use of recombinant activated factor VII (rFVIIa) in uncontrolled bleeding: a report by the Israeli Multidisciplinary rFVIIa Task Force.  J Thromb Haemost. 2005;  3 640-648
  • 2 Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy.  J Trauma. 2003;  54 1127-1130
  • 3 Malone DL, Dunne J, Tracy JK, Putnam AT, Scalea TM, Napolitano LM. Blood transfusion, independent of shock severity, is associated with worse outcome in trauma.  J Trauma. 2003;  54 905-897
  • 4 Robinson 3rd WP, Ahn J, Stiffler A, Rutherford EJ, Hurd H, Zarzaur BL, Baker CC, Meyer AA, Rich PB. Blood transfusion is an independent predictor of increased mortality in nonoperatively managed blunt hepatic and splenic injuries.  J Trauma. 2005;  58 444-435
  • 5 Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, Pons PT. Epidemiology of trauma deaths: a reassessment.  J Trauma. 1995;  38 185-193
  • 6 Guyatt G, Schunemann HJ, Cook D, Jaeschke R, Pauker S. Applying the grades of recommendation for antithrombotic and thrombolytic therapy: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy.  Chest. 2004;  126
  • 7 Mosesson MW. Fibrinogen and fibrin structure and functions.  J Thromb Haemost. 2005;  3 1894-1904
  • 8 Rojkjaer LP, Rojkjaer R. Clot stabilization for the prevention of bleeding.  Hematol Oncol Clin North Am. 2007;  21 25-32
  • 9 Segal JB, Dzik WH. Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: an evidence-based review.  Transfusion. 2005;  45 1413-1425
  • 10 Kitchens CS. To bleed or not to bleed? Is that the question for the PTT?.  J Thromb Haemost. 2005;  3 2607-2611
  • 11 Luddington RJ. Thrombelastography/thromboelastometry.  Clin Lab Haematol. 2005;  27 81-90
  • 12 Fries D, Haas T, Klingler A, Streif W, Klima G, Martini J, Wagner-Berger H, Innerhofer P. Efficacy of fibrinogen and prothrombin complex concentrate used to reverse dilutional coagulopathy – a porcine model.  Br J Anaesth. 2006;  97 460-467
  • 13 Lang T, von M Depka. [Possibilities and limitations of thrombelastometry/-graphy].  Hamostaseologie. 2006;  26 20-29
  • 14 Spalding GJ, Hartrumpf M, Sierig T, Oesberg N, Kirschke CG, Albes JM. Cost reduction of perioperative coagulation management in cardiac surgery: value of "bedside" thrombelastography (ROTEM).  Eur J Cardiothorac Surg. 2007;  31 1052-1057
  • 15 Martini WZ, Cortez DS, Dubick MA, Park MS, Holcomb JB. Thrombelastography is better than PT, aPTT, and activated clotting time in detecting clinically relevant clotting abnormalities after hypothermia, hemorrhagic shock and resuscitation in pigs.  J Trauma. 2008;  65 535-543
  • 16 MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma.  J Trauma. 2003;  55 39-44
  • 17 Niles SE, McLaughlin DF, Perkins JG, Wade CE, Li Y, Spinella PC, Holcomb JB. Increased mortality associated with the early coagulopathy of trauma in combat casualties.  J Trauma. 2008;  64 1463-1455
  • 18 Parr MJ, Bouillon B, Brohi K, Dutton RP, Hauser CJ, Hess JR, Holcomb JB, Kluger Y, Mackway-Jones K, Rizoli SB, Yukioka T, Hoyt DB. Traumatic coagulopathy: where are the good experimental models?.  J Trauma. 2008;  65 766-771
  • 19 Dunbar NM, Chandler WL. Thrombin generation in trauma patients.  Transfusion.. [Epub ahead of print] 2009; 
  • 20 Hess JR. Blood and coagulation support in trauma care.  Hematology Am Soc Hematol Educ Program. 2007;  2007 187-191
  • 21 Lier H, Krep H, Schroeder S, Stuber F. Preconditions of hemostasis in trauma: a review. The influence of acidosis, hypocalcemia, anemia, and hypothermia on functional hemostasis in trauma.  J Trauma. 2008;  65 951-960
  • 22 Schochl H. [Coagulation management in major trauma].  Hamostaseologie. 2006;  26 52-55
  • 23 Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway?.  Ann Surg. 2007;  245 812-818
  • 24 Brohi K, Cohen MJ, Ganter MT, Schultz MJ, Levi M, Mackersie RC, Pittet JF. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis.  J Trauma. 2008;  64
  • 25 Choi PT, Yip G, Quinonez LG, Cook DJ. Crystalloids vs. colloids in fluid resuscitation: a systematic review.  Crit Care Med. 1999;  27 200-210
  • 26 Schierhout G, Roberts I. Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomised trials.  BMJ. 1998;  316 961-964
  • 27 Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management.  Anesthesiology. 2008;  109 723-740
  • 28 Kiraly LN, Differding JA, Enomoto TM, Sawai RS, Muller PJ, Diggs B, Tieu BH, Englehart MS, Underwood S, Wiesberg TT, Schreiber MA. Resuscitation with normal saline (NS) vs. lactated ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model.  J Trauma. 2006;  61 64-55
  • 29 Krausz MM. Controversies in shock research: hypertonic resuscitation – pros and cons.  Shock. 1995;  3 69-72
  • 30 Scherer R, Giebler R, Kampe S, Kox WJ. Effects of hypertonic saline hydroxyethyl starch solution on collagen-induced platelet aggregation and ATP secretion.  Infusionsther Transfusionsmed. 1994;  21 310-314
  • 31 Wade CE, Kramer GC, Grady JJ, Fabian TC, Younes RN. Efficacy of hypertonic 7.5% saline and 6% dextran-70 in treating trauma: a meta-analysis of controlled clinical studies.  Surgery. 1997;  122 609-616
  • 32 Boldt J, Kling D, Herold C, Dapper F, Hempelmann G. Volume therapy with hypertonic saline hydroxyethyl starch solution in cardiac surgery.  Anaesthesia. 1990;  45 928-934
  • 33 Haas T, Fries D, Holz C, Innerhofer P, Streif W, Klingler A, Hanke A, Velik-Salchner C. Less impairment of hemostasis and reduced blood loss in pigs after resuscitation from hemorrhagic shock using the small-volume concept with hypertonic saline/hydroxyethyl starch as compared to administration of 4% gelatin or 6% hydroxyethyl starch solution.  Anesth Analg. 2008;  106
  • 34 Madjdpour C, Dettori N, Frascarolo P, Burki M, Boll M, Fisch A, Bombeli T, Spahn DR. Molecular weight of hydroxyethyl starch: is there an effect on blood coagulation and pharmacokinetics?.  Br J Anaesth. 2005;  94 569-576
  • 35 von Roten I, Madjdpour C, Frascarolo P, Burmeister MA, Fisch A, Schramm S, Bombeli T, Spahn DR. Molar substitution and C2/C6 ratio of hydroxyethyl starch: influence on blood coagulation.  Br J Anaesth. 2006;  96 455-463
  • 36 Kozek-Langenecker SA. Effects of hydroxyethyl starch solutions on hemostasis.  Anesthesiology. 2005;  103 654-660
  • 37 Deusch E, Thaler U, Kozek-Langenecker SA. The effects of high molecular weight hydroxyethyl starch solutions on platelets.  Anesth Analg. 2004;  99
  • 38 Stogermuller B, Stark J, Willschke H, Felfernig M, Hoerauf K, Kozek-Langenecker SA. The effect of hydroxyethyl starch 200 kD on platelet function.  Anesth Analg. 2000;  91 823-827
  • 39 Treib J, Baron JF, Grauer MT, Strauss RG. An international view of hydroxyethyl starches.  Intensive Care Med. 1999;  25 258-268
  • 40 Innerhofer P, Fries D, Margreiter J, Klingler A, Kuhbacher G, Wachter B, Oswald E, Salner E, Frischhut B, Schobersberger W. The effects of perioperatively administered colloids and crystalloids on primary platelet-mediated hemostasis and clot formation.  Anesth Analg. 2002;  95
  • 41 Mittermayr M, Streif W, Haas T, Fries D, Velik-Salchner C, Klingler A, Oswald E, Bach C, Schnapka-Koepf M, Innerhofer P. Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration.  Anesth Analg. 2007;  105
  • 42 Fenger-Eriksen C, Anker-Moller E, Heslop J, Ingerslev J, Sorensen B. Thrombelastographic whole blood clot formation after ex vivo addition of plasma substitutes: improvements of the induced coagulopathy with fibrinogen concentrate.  Br J Anaesth. 2005;  94 324-329
  • 43 De Lorenzo C, Calatzis A, Welsch U, Heindl B. Fibrinogen concentrate reverses dilutional coagulopathy induced in vitro by saline but not by hydroxyethyl starch 6%.  Anesth Analg. 2006;  102 1194-1200
  • 44 Mardel SN, Saunders FM, Allen H, Menezes G, Edwards CM, Ollerenshaw L, Baddeley D, Kennedy A, Ibbotson RM. Reduced quality of clot formation with gelatin-based plasma substitutes.  Br J Anaesth. 1998;  80 204-207
  • 45 de Jonge E, Levi M, Buller HR, Berends F, Kesecioglu J. Decreased circulating levels of von Willebrand factor after intravenous administration of a rapidly degradable hydroxyethyl starch (HES 200/0.5/6) in healthy human subjects.  Intensive Care Med. 2001;  27 1825-1829
  • 46 Rugeri L, Levrat A, David JS, Delecroix E, Floccard B, Gros A, Allaouchiche B, Negrier C. Diagnosis of early coagulation abnormalities in trauma patients by rotation thrombelastography.  J Thromb Haemost. 2007;  5 289-295
  • 47 Levrat A, Gros A, Rugeri L, Inaba K, Floccard B, Negrier C, David JS. Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients.  Br J Anaesth. 2008;  100 792-797
  • 48 Adam DJ, Haggart PC, Ludlam CA, Bradbury AW. Coagulopathy and hyperfibrinolysis in ruptured abdominal aortic aneurysm repair.  Ann Vasc Surg. 2004;  18 572-577
  • 49 Coats T, Roberts I, Shakur H. Antifibrinolytic drugs for acute traumatic injury.  Cochrane Database Syst Rev. CD 004896 2004; 
  • 50 Crash-2trial colaborators et al.. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial.  Lancet. 2010;  376 23-32
  • 51 Henry DA, Moxey AJ, Carless PA, O'Connell D, McClelland B, Henderson KM, Sly K, Laupacis A, Fergusson D. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion.  Cochrane Database Syst Rev. CD 001886 2001; 
  • 52 Myles PS, Esmore DS. Intraoperative coronary thrombosis with aprotinin in the prebypass period.  J Cardiothorac Vasc Anesth. 2007;  21 558-560
  • 53 Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery.  N Engl J Med. 2006;  354 353-365
  • 54 Fergusson DA, Hebert PC, Mazer CD, Fremes S, MacAdams C, Murkin JM, Teoh K, Duke PC, Arellano R, Blajchman MA, Bussieres JS, Cote D, Karski J, Martineau R, Robblee JA, Rodger M, Wells G, Clinch J, Pretorius R. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery.  N Engl J Med. 2008;  358 2319-2331
  • 55 Cosgriff N, Moore EE, Sauaia A, Kenny-Moynihan M, Burch JM, Galloway B. Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited.  J Trauma. 1997;  42 861-852
  • 56 Martin RS, Kilgo PD, Miller PR, Hoth JJ, Meredith JW, Chang MC. Injury-associated hypothermia: an analysis of the 2004 National Trauma Data Bank.  Shock. 2005;  24 114-118
  • 57 Allen GA, Wolberg AS, Oliver JA, Hoffman M, Roberts HR, Monroe DM. Impact of procoagulant concentration on rate, peak and total thrombin generation in a model system.  J Thromb Haemost. 2004;  2 402-413
  • 58 Watts DD, Trask A, Soeken K, Perdue P, Dols S, Kaufmann C. Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity.  J Trauma. 1998;  44 846-854
  • 59 Valeri CR, Feingold H, Cassidy G, Ragno G, Khuri S, Altschule MD. Hypothermia-induced reversible platelet dysfunction.  Ann Surg. 1987;  205 175-181
  • 60 Michelson AD, MacGregor H, Barnard MR, Kestin AS, Rohrer MJ, Valeri CR. Reversible inhibition of human platelet activation by hypothermia in vivo and in vitro.  Thromb Haemost. 1994;  71 633-640
  • 61 Straub A, Breuer M, Wendel HP, Peter K, Dietz K, Ziemer G. Critical temperature ranges of hypothermia-induced platelet activation: possible implications for cooling patients in cardiac surgery.  Thromb Haemost. 2007;  97 608-616
  • 62 Xavier RG, White AE, Fox SC, Wilcox RG, Heptinstall S. Enhanced platelet aggregation and activation under conditions of hypothermia.  Thromb Haemost. 2007;  98 1266-1275
  • 63 Cohen MJ, Brohi K, Ganter MT, Manley GT, Mackersie RC, Pittet JF. Early coagulopathy after traumatic brain injury: the role of hypoperfusion and the protein C pathway.  J Trauma. 2007;  63 1261-1252
  • 64 Martini WZ, Pusateri AE, Uscilowicz JM, Delgado AV, Holcomb JB. Independent contributions of hypothermia and acidosis to coagulopathy in swine.  J Trauma. 2005;  58 1009-1010
  • 65 Martini WZ, Holcomb JB. Acidosis and coagulopathy: the differential effects on fibrinogen synthesis and breakdown in pigs.  Ann Surg. 2007;  246 831-835
  • 66 Dunne JR, Riddle MS, Danko J, Hayden R, Petersen K. Blood transfusion is associated with infection and increased resource utilization in combat casualties.  Am Surg. 2006;  72 625-616
  • 67 Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, Tweeddale M, Schweitzer I, Yetisir E. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group.  N Engl J Med. 1999;  340 409-417
  • 68 McIntyre L, Hebert PC, Wells G, Fergusson D, Marshall J, Yetisir E, Blajchman MJ. Is a restrictive transfusion strategy safe for resuscitated and critically ill trauma patients?.  J Trauma. 2004;  57
  • 69 Hardy JF, de Moerloose P, Samama CM. Massive transfusion and coagulopathy: pathophysiology and implications for clinical management.  Can J Anaesth. 2006;  53 40-58
  • 70 Haas T, Innerhofer P, Klingler A, Wagner-Berger H, Velik-Salchner C, Streif W, Fries D. Re-transfusion of salvaged washed red cells improves clot formation in pigs as measured by rotational thrombelastometry (ROTEM).  Eur J Anaesthesiol. 2008;  25 473-478
  • 71 Practice Guidelines for blood component therapy: A report by the American Society of Anesthesiologists Task Force on Blood Component Therapy.  Anesthesiology. 1996;  84 732-747
  • 72 Samama CM, Djoudi R, Lecompte T, Nathan-Denizot N, Schved JF. Perioperative platelet transfusion: recommendations of the Agence Francaise de Securite Sanitaire des Produits de Sante (AFSSaPS) 2003.  Can J Anaesth. 2005;  52 30-37
  • 73 Spahn DR, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, Gordini G, Stahel PF, Hunt BJ, Komadina R, Neugebauer E, Ozier Y, Riddez L, Schultz A, Vincent JL, Rossaint R. Management of bleeding following major trauma: a European guideline.  Crit Care. 2007;  11
  • 74 Velik-Salchner C, Haas T, Innerhofer P, Streif W, Nussbaumer W, Klingler A, Klima G, Martinowitz U, Fries D. The effect of fibrinogen concentrate on thrombocytopenia.  J Thromb Haemost. 2007;  5 1019-1025
  • 75 Singbartl K, Innerhofer P, Radvan J, Westphalen B, Fries D, Stogbauer R, Van Aken H. Hemostasis and hemodilution: a quantitative mathematical guide for clinical practice.  Anesth Analg. 2003;  96
  • 76 Hiippala ST, Myllyla GJ, Vahtera EM. Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates.  Anesth Analg. 1995;  81 360-365
  • 77 McLoughlin TM, Fontana JL, Alving B, Mongan PD, Bunger R. Profound normovolemic hemodilution: hemostatic effects in patients and in a porcine model.  Anesth Analg. 1996;  83 459-465
  • 78 Fries D, Innerhofer P, Klingler A, Berresheim U, Mittermayr M, Calatzis A, Schobersberger W. The effect of the combined administration of colloids and lactated Ringer's solution on the coagulation system: an in vitro study using thrombelastograph coagulation analysis (ROTEG).  Anesth Analg. 2002;  94
  • 79 Stainsby D, MacLennan S, Thomas D, Isaac J, Hamilton PJ. Guidelines on the management of massive blood loss.  Br J Haematol. 2006;  135 634-641
  • 80 Ciavarella D, Reed RL, Counts RB, Baron L, Pavlin E, Heimbach DM, Carrico CJ. Clotting factor levels and the risk of diffuse microvascular bleeding in the massively transfused patient.  Br J Haematol. 1987;  67 365-368
  • 81 Charbit B, Mandelbrot L, Samain E, Baron G, Haddaoui B, Keita H, Sibony O, Mahieu-Caputo D, Hurtaud-Roux MF, Huisse MG, Denninger MH, de Prost D. The decrease of fibrinogen is an early predictor of the severity of postpartum hemorrhage.  J Thromb Haemost. 2007;  5 266-273
  • 82 Gerlach R, Tolle F, Raabe A, Zimmermann M, Siegemund A, Seifert V. Increased risk for postoperative hemorrhage after intracranial surgery in patients with decreased factor XIII activity: implications of a prospective study.  Stroke. 2002;  33 1618-1623
  • 83 Blome M, Isgro F, Kiessling AH, Skuras J, Haubelt H, Hellstern P, Saggau W. Relationship between factor XIII activity, fibrinogen, haemostasis screening tests and postoperative bleeding in cardiopulmonary bypass surgery.  Thromb Haemost. 2005;  93 1101-1107
  • 84 Ucar HI, Oc M, Tok M, Dogan OF, Oc B, Aydin A, Farsak B, Guvener M, Yorgancioglu AC, Dogan R, Demircin M, Pasaoglu I. Preoperative fibrinogen levels as a predictor of postoperative bleeding after open heart surgery.  Heart Surg Forum. 2007;  10 392-396
  • 85 Weinstock N, Ntefidou M. SSC International Collaborative Study to establish the first high fibrinogen plasma reference material for use with different fibrinogen assay techniques.  J Thromb Haemost. 2006;  4 1825-1827
  • 86 Hiippala ST. Dextran and hydroxyethyl starch interfere with fibrinogen assays.  Blood Coagul Fibrinolysis. 1995;  6 743-746
  • 87 Adam S, Karger R, Kretschmer V. Photo-Optical Methods Can Lead to Clinically Relevant Overestimation of Fibrinogen Concentration in Plasma Diluted With Hydroxyethyl Starch.  Clin Appl Thromb Hemost. 2009; 
  • 88 Adam S, Karger R, Kretschmer V. Influence of Different Hydroxyethyl Starch (HES) Formulations on Fibrinogen Measurement in HES-Diluted Plasma.  Clin Appl Thromb Hemost. 2009; 
  • 89 Fries D, Krismer A, Klingler A, Streif W, Klima G, Wenzel V, Haas T, Innerhofer P. Effect of fibrinogen on reversal of dilutional coagulopathy: a porcine model.  Br J Anaesth. 2005;  95 172-177
  • 90 Danes AF, Cuenca LG, Bueno SR, Mendarte Barrenechea L, Ronsano JB. Efficacy and tolerability of human fibrinogen concentrate administration to patients with acquired fibrinogen deficiency and active or in high-risk severe bleeding.  Vox Sang. 2008;  94 221-226
  • 91 Fenger-Eriksen C, Lindberg-Larsen M, Christensen AQ, Ingerslev J, Sorensen B. Fibrinogen concentrate substitution therapy in patients with massive haemorrhage and low plasma fibrinogen concentrations.  Br J Anaesth. 2008;  101 769-773
  • 92 Kreuz W, Meili E, Peter-Salonen K, Haertel S, Devay J, Krzensk U, Egbring R. Efficacy and tolerability of a pasteurised human fibrinogen concentrate in patients with congenital fibrinogen deficiency.  Transfus Apher Sci. 2005;  32 247-253
  • 93 Stinger HK, Spinella PC, Perkins JG, Grathwohl KW, Salinas J, Martini WZ, Hess JR, Dubick MA, Simon CD, Beekley AC, Wolf SE, Wade CE, Holcomb JB. The ratio of fibrinogen to red cells transfused affects survival in casualties receiving massive transfusions at an army combat support hospital.  J Trauma. 2008;  64
  • 94 Haas T, Fries D, Velik-Salchner C, Oswald E, Innerhofer P. Fibrinogen in craniosynostosis surgery.  Anesth Analg. 2008;  106
  • 95 Fenger-Eriksen C, Jensen TM, Kristensen BS, Jensen KM, Tonnesen E, Ingerslev J, Sorensen B. Fibrinogen substitution improves whole blood clot firmness after dilution with hydroxyethyl starch in bleeding patients undergoing radical cystectomy: a randomized, placebo-controlled clinical trial.  J Thromb Haemost. 2009;  7 795-802
  • 96 Karlsson M, Ternstrom L, Hyllner M, Baghaei F, Flinck A, Skrtic S, Jeppsson A. Prophylactic fibrinogen infusion reduces bleeding after coronary artery bypass surgery. A prospective randomised pilot study.  Thromb Haemost. 2009;  102 137-144
  • 97 Rahe-Meyer N, Pichlmaier M, Haverich A, Solomon C, Winterhalter M, Piepenbrock S, Tanaka KA. Bleeding management with fibrinogen concentrate targeting a high-normal plasma fibrinogen level: a pilot study.  Br J Anaesth. 2009;  102 785-792
  • 98 Rahe-Meyer N, Solomon C, Winterhalter M, Piepenbrock S, Tanaka K, Haverich A, Pichlmaier M. Thromboelastometry-guided administration of fibrinogen concentrate for the treatment of excessive intraoperative bleeding in thoracoabdominal aortic aneurysm surgery.  J Thorac Cardiovasc Surg. 2009;  138 694-702
  • 99 Staudinger T, Frass M, Rintelen C, Quehenberger P, Wagner O, Stoiser B, Locker GJ, Laczika K, Knapp S, Watzke H. Influence of prothrombin complex concentrates on plasma coagulation in critically ill patients.  Intensive Care Med. 1999;  25 1105-1110
  • 100 Chandler WL, Patel MA, Gravelle L, Soltow LO, Lewis K, Bishop PD, Spiess BD. Factor XIIIA and clot strength after cardiopulmonary bypass.  Blood Coagul Fibrinolysis. 2001;  12 101-108
  • 101 Wettstein P, Haeberli A, Stutz M, Rohner M, Corbetta C, Gabi K, Schnider T, Korte W. Decreased factor XIII availability for thrombin and early loss of clot firmness in patients with unexplained intraoperative bleeding.  Anesth Analg. 2004;  99
  • 102 Fries D, Innerhofer P, Von Metz A. Administration of FXIII concentrate in surgical critical ill patients with microvascular bleeding complication.  AIC News. 2008;  58 4
  • 103 Barletta JF, Ahrens CL, Tyburski JG, Wilson RF. A review of recombinant factor VII for refractory bleeding in nonhemophilic trauma patients.  J Trauma. 2005;  58 646-651
  • 104 Boffard KD, Riou B, Warren B, Choong PI, Rizoli S, Rossaint R, Axelsen M, Kluger Y. Recombinant factor VIIa as adjunctive therapy for bleeding control in severely injured trauma patients: two parallel randomized, placebo-controlled, double-blind clinical trials.  J Trauma. 2005;  59 15-18
  • 105 Hsia CC, Chin-Yee IH, McAlister VC. Use of recombinant activated factor VII in patients without hemophilia: a meta-analysis of randomized control trials.  Ann Surg. 2008;  248 61-68
  • 106 Narayan RK, Maas AI, Marshall LF, Servadei F, Skolnick BE, Tillinger MN. Recombinant factor VIIA in traumatic intracerebral hemorrhage: results of a dose-escalation clinical trial.  Neurosurgery. 2008;  62 786-778
  • 107 Stanworth SJ, Brunskill SJ, Hyde CJ, McClelland DB, Murphy MF. Is fresh frozen plasma clinically effective? A systematic review of randomized controlled trials.  Br J Haematol. 2004;  126 139-152
  • 108 Hedin A, Hahn RG. Volume expansion and plasma protein clearance during intravenous infusion of 5% albumin and autologous plasma.  Clin Sci (Lond). 2005;  108 217-224
  • 109 Chowdhury P, Saayman AG, Paulus U, Findlay GP, Collins PW. Efficacy of standard dose and 30 ml/kg fresh frozen plasma in correcting laboratory parameters of haemostasis in critically ill patients.  Br J Haematol. 2004;  125 69-73
  • 110 Dara SI, Rana R, Afessa B, Moore SB, Gajic O. Fresh frozen plasma transfusion in critically ill medical patients with coagulopathy.  Crit Care Med. 2005;  33 2667-2671
  • 111 Sarani B, Dunkman WJ, Dean L, Sonnad S, Rohrbach JI, Gracias VH. Transfusion of fresh frozen plasma in critically ill surgical patients is associated with an increased risk of infection.  Crit Care Med. 2008;  36 1114-1118
  • 112 Khan H, Belsher J, Yilmaz M, Afessa B, Winters JL, Moore SB, Hubmayr RD, Gajic O. Fresh-frozen plasma and platelet transfusions are associated with development of acute lung injury in critically ill medical patients.  Chest. 2007;  131 1308-1314
  • 113 Watson GA, Sperry JL, Rosengart MR, Minei JP, Harbrecht BG, Moore EE, Cuschieri J, Maier RV, Billiar TR, Peitzman AB. Fresh frozen plasma is independently associated with a higher risk of multiple organ failure and acute respiratory distress syndrome.  J Trauma. 2009;  67 228-230
  • 114 Rana R, Fernandez-Perez ER, Khan SA, Rana S, Winters JL, Lesnick TG, Moore SB, Gajic O. Transfusion-related acute lung injury and pulmonary edema in critically ill patients: a retrospective study.  Transfusion. 2006;  46 1478-1483
  • 115 Gonzalez EA, Moore FA, Holcomb JB, Miller CC, Kozar RA, Todd SR, Cocanour CS, Balldin BC, McKinley BA. Fresh frozen plasma should be given earlier to patients requiring massive transfusion.  J Trauma. 2007;  62 112-119
  • 116 Slam K, Zyromski N, Nowicki P, Serrano P, Purtill MA. Common bleeding disorders: a potential catastrophe for the trauma victim. Therapeutic recommendations for the treatment of von Willebrand's disease.  J Trauma. 2008;  64 1373-1375
  • 117 Beck KH, Mohr P, Bleckmann U, Schweer H, Kretschmer V. Desmopressin effect on acetylsalicylic acid impaired platelet function.  Semin Thromb Hemost. 1995;  21 (S 01) 32-39
  • 118 Martini WZ, Dubick MA, Pusateri AE, Park MS, Ryan KL, Holcomb JB. Does bicarbonate correct coagulation function impaired by acidosis in swine?.  J Trauma. 2006;  61 99-106
  • 119 Koscielny J, von Tempelhoff GF, Ziemer S, Radtke H, Schmutzler M, Sinha P, Salama A, Kiesewetter H, Latza R. A practical concept for preoperative management of patients with impaired primary hemostasis.  Clin Appl Thromb Hemost. 2004;  10 155-166

Dietmar Fries
Petra Innerhofer
Peter Perger
Manfred Gütl
Sabine Heil
Nikolaus Hofmann
Werner Kneifel
Ludwig Neuner
Thomas Pernerstorfer
Georg Pfanner
Herbert Schöchl
Bernhard Ziegler
Camillo Kölblinger
Sibylle Kozek-Langenecker