Aktuelle Ernährungsmedizin 2010; 35(3): 124-130
DOI: 10.1055/s-0030-1248434
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Phasenwinkel und Bioelektrische Impedanzvektoranalyse – Klinische Anwendbarkeit der Impedanzparameter

Phase Angle and Bioelectrical Impedance Vector Analysis – Clinical Practicability of Impedance ParametersN.  Stobäus1 , K.  Norman1 , M.  Pirlich1
  • 1Medizinische Klinik mit Schwerpunkt Gastroenterologie, Hepatologie und Endokrinologie, Charité – Universitätsmedizin Berlin
Further Information

Publication History

Publication Date:
05 May 2010 (online)

Zusammenfassung

Die Verwendung des Phasenwinkels und weiterer Rohwerte der Bioelektrischen Impedanzanalyse(BIA) hat als Alternative zur Berechnung der Körperzusammensetzung in den letzten Jahren zunehmend an Bedeutung gewonnen. Die vorliegende Arbeit gibt einen Überblick über die klinische Anwendbarkeit und Bedeutung von Phasenwinkel und Bioelektrischer Impedanzvektoranalyse (BIVA). Der Phasenwinkel berechnet sich direkt aus der Resistanz (Ohm'scher Widerstand) und Reaktanz (kapazitiver Widerstand). Zahlreiche Studien belegen, dass der Phasenwinkel bei verschiedensten Krankheitsbildern ein signifikanter Prädiktor der Mortalität ist. In der BIVA werden Resistanz und Reaktanz als bivariater Vektor grafisch in einem Koordinatensystem (Vektorgraph) dargestellt. Die Betrachtung der Vektorlage ermöglicht eine detaillierte Sicht auf Hydratationszustand bzw. Zellmasse und erlaubt somit die Beurteilung auch solcher Personen, bei denen aufgrund veränderter Hydratationszustände keine genauen Ergebnisse der Körperzusammensetzung zu erwarten sind. Referenzwerte, die die Interpretation der Daten ermöglichen, existieren sowohl für den Phasenwinkel als auch für die BIVA. Die Impedanzparameter sind für die klinische Verwendung geeignet, erlauben die Identifizierung von Risikopatienten und sind insbesondere dann für das Ernährungsassessment interessant, wenn eine valide Berechnung der Körperzusammensetzung nicht möglich ist.

Abstract

The use of phase angle and other raw parameter of the bioelectrical impedance analysis (BIA) has gained attention as an alternative to the assessment of body composition over the last years. This work gives an overview over the clinical use of phase angle and Bioelectrical Impedance Vector Analysis (BIVA). Phase angle is calculated directly from resistance (pure opposition of a biological conductor to alternating electric current) and reactance (capacitative resistance). Various studies show the prognostic value of phase angle in relation to mortality in different clinical settings. BIVA uses the plot of impedance parameters resistance and reactance normalized per height as a bivariate vector in the vectorgraph. The shortening or lengthening of the vector indicates hydration status in form of oedema or dehydration, respectively, whereas a migration sideways indicates increase or decrease in body cell mass. BIVA thus provides information about hydration status and body cell mass and therefore allows assessment of patients in whom the calculation of body composition fails due to altered hydration status. Reference values exist for both phase angle and BIVA, which facilitates interpretation of the data. Impedance parameters and phase angle are useful for clinical practice, allow the identification of risk patients and are relevant for nutritional assessment, in particular when calculation of body composition is not feasible.

Literatur

  • 1 Kyle U G, Bosaeus I, De Lorenzo A D. et al . Bioelectrical impedance analysis-part II: utilization in clinical practice.  Clin Nutr. 2004;  23 1430-1453
  • 2 Müller M J. Bioelektrische Impedanzanalse. Auf dem Weg zu einer standardisierten Methode zur Charakterisierung der Körperzusammensetzung.  Aktuel Ernaehr Med. 2000;  25 167-169
  • 3 Lukaski H C, Bolonchuk W W, Hall C B. et al . Validation of tetrapolar bioelectrical impedance method to assess human body composition.  J Appl Physiol. 1986;  60 1327-1332
  • 4 Heymsfield S B, Wang Z, Visser M. et al . Techniques used in the measurement of body composition: an overview with emphasis on bioelectrical impedance analysis.  Am J Clin Nutr. 1996;  64 478S-484S
  • 5 Baumgartner R N, Chumlea W C, Roche A F. Bioelectric impedance phase angle and body composition.  Am J Clin Nutr. 1988;  48 16-23
  • 6 Mattar J A. Application of total body bioimpedance to the critically ill patient. Brazilian Group for Bioimpedance Study.  New Horiz. 1996;  4 493-503
  • 7 Zdolsek H J, Lindahl O A, Sjoberg F. Non-invasive assessment of fluid volume status in the interstitium after haemodialysis.  Physiol Meas. 2000;  21 211-220
  • 8 Dittmar M. Reliability and variability of bioimpedance measures in normal adults: effects of age, gender, and body mass.  Am J Phys Anthropol. 2003;  122 361-370
  • 9 Pupim L B, Kent P, Ikizler T A. Bioelectrical impedance analysis in dialysis patients.  Miner Electrolyte Metab. 1999;  25 400-406
  • 10 Selberg O, Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis.  Eur J Appl Physiol. 2002;  86 509-516
  • 11 Bosy-Westphal A, Danielzik S, Dorhofer R P. et al . Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index.  JPEN J Parenter Enteral Nutr. 2006;  30 309-316
  • 12 Torres A G, Oliveira K JF, Oliveira-Junior A V. et al . Biological determinants of phase angle among Brazilian elite athletes.  Proceedings of the Nutrition Society. 2008;  67 (OCE8), E332
  • 13 Schoeller D A. Changes in total body water with age.  Am J Clin Nutr. 1989;  50 1176-1181
  • 14 Kyle U G, Genton L, Slosman D O. et al . Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years.  Nutrition. 2001;  17 534-541
  • 15 Barbosa-Silva M C, Barros A J, Wang J. et al . Bioelectrical impedance analysis: population reference values for phase angle by age and sex.  Am J Clin Nutr. 2005;  82 49-52
  • 16 Dumler F, Kilates C. Body composition analysis by bioelectrical impedance in chronic maintenance dialysis patients: comparisons to the National Health and Nutrition Examination Survey III.  J Ren Nutr. 2003;  13 166-172
  • 17 Gunn S M, Halbert J A, Giles L C. et al . Bioelectrical phase angle values in a clinical sample of ambulatory rehabilitation patients.  Dyn Med. 2008;  7 14
  • 18 Ott M, Fischer H, Polat H. et al . Bioelectrical impedance analysis as a predictor of survival in patients with human immunodeficiency virus infection.  J Acquir Immune Defic Syndr Hum Retrovirol. 1995;  9 20-25
  • 19 Schwenk A, Beisenherz A, Romer K. et al . Phase angle from bioelectrical impedance analysis remains an independent predictive marker in HIV-infected patients in the era of highly active antiretroviral treatment.  Am J Clin Nutr. 2000;  72 496-501
  • 20 Toso S, Piccoli A, Gusella M. et al . Altered tissue electric properties in lung cancer patients as detected by bioelectric impedance vector analysis.  Nutrition. 2000;  16 120-124
  • 21 Gupta D, Lammersfeld C A, Burrows J L. et al . Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer.  Am J Clin Nutr. 2004;  80 1634-1638
  • 22 Gupta D, Lis C G, Dahlk S L. et al . Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer.  Br J Nutr. 2004;  92 957-962
  • 23 Gupta D, Lammersfeld C A, Vashi P G. et al . Bioelectrical impedance phase angle as a prognostic indicator in breast cancer.  BMC Cancer. 2008;  8 249
  • 24 Gupta D, Lammersfeld C A, Vashi P G. et al . Bioelectrical impedance phase angle in clinical practice: implications for prognosis in stage IIIB and IV non-small cell lung cancer.  BMC Cancer. 2009;  9 37
  • 25 Desport J C, Marin B, Funalot B. et al . Phase angle is a prognostic factor for survival in amyotrophic lateral sclerosis.  Amyotroph Lateral Scler. 2008;  9 273-278
  • 26 Maggiore Q, Nigrelli S, Ciccarelli C. et al . Nutritional and prognostic correlates of bioimpedance indexes in hemodialysis patients.  Kidney Int. 1996;  50 2103-2108
  • 27 Chertow G M. Phase angle predicts survival in hemodialysis patients.  Journal of Renal Nutrition. 1997;  7 204-207
  • 28 Fein P A, Gundumalla G, Jorden A. et al . Usefulness of bioelectrical impedance analysis in monitoring nutrition status and survival of peritoneal dialysis patients.  Adv Perit Dial. 2002;  18 195-199
  • 29 Mushnick R, Fein P A, Mittman N. et al . Relationship of bioelectrical impedance parameters to nutrition and survival in peritoneal dialysis patients.  Kidney Int Suppl. 2003;  87 S53-S56
  • 30 Barbosa-Silva M C, Barros A J. Bioelectric impedance and individual characteristics as prognostic factors for post-operative complications.  Clin Nutr. 2005;  24 830-838
  • 31 Shizgal H M. The effect of malnutrition on body composition.  Surg Gynecol Obstet. 1981;  152 22-26
  • 32 Norman K, Smoliner C, Valentini L. et al . Is bioelectrical impedance vector analysis of value in the elderly with malnutrition and impaired functionality?.  Nutrition. 2007;  23 564-569
  • 33 Barbosa-Silva M C, Barros A J, Post C L. et al . Can bioelectrical impedance analysis identify malnutrition in preoperative nutrition assessment?.  Nutrition. 2003;  19 422-426
  • 34 Gupta D, Lis C G, Dahlk S L. et al . The relationship between bioelectrical impedance phase angle and subjective global assessment in advanced colorectal cancer.  Nutr J. 2008;  7 19
  • 35 Mika C, Herpertz-Dahlmann B, Heer M. et al . Improvement of nutritional status as assessed by multifrequency BIA during 15 weeks of refeeding in adolescent girls with anorexia nervosa.  J Nutr. 2004;  134 3026-3030
  • 36 Norman K, Kirchner H, Freudenreich M. et al . Three month intervention with protein and energy rich supplements improve muscle function and quality of life in malnourished patients with non-neoplastic gastrointestinal disease – a randomized controlled trial.  Clin Nutr. 2008;  27 48-56
  • 37 Nagano M, Suita S, Yamanouchi T. The validity of bioelectrical impedance phase angle for nutritional assessment in children.  J Pediatr Surg. 2000;  35 1035-1039
  • 38 Marra M, Caldara A, Montagnese C. et al . Bioelectrical impedance phase angle in constitutionally lean females, ballet dancers and patients with anorexia nervosa.  Eur J Clin Nutr. 2009;  63 905-908
  • 39 Gupta D, Lis C G, Granick J. et al . Malnutrition was associated with poor quality of life in colorectal cancer: a retrospective analysis.  J Clin Epidemiol. 2006;  59 704-709
  • 40 Piccoli A, Rossi B, Pillon L. et al . A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph.  Kidney Int. 1994;  46 534-539
  • 41 Piccoli A, Pastori G. BIVA Software, University of Padova. Padova, Italy; Dept of Medical and Surgical Sciences 2002
  • 42 Piccoli A, Nigrelli S, Caberlotto A. et al . Bivariate normal values of the bioelectrical impedance vector in adult and elderly populations.  Am J Clin Nutr. 1995;  61 269-270
  • 43 Piccoli A, Pillon L, Dumler F. Impedance vector distribution by sex, race, body mass index, and age in the United States: standard reference intervals as bivariate Z scores.  Nutrition. 2002;  18 153-167
  • 44 Bosy-Westphal A, Danielzik S, Dorhofer R P. et al . Patterns of bioelectrical impedance vector distribution by body mass index and age: implications for body-composition analysis.  Am J Clin Nutr. 2005;  82 60-68
  • 45 Norman K, Smoliner C, Kilbert A. et al . Disease-related malnutrition but not underweight by BMI is reflected by disturbed electric tissue properties in the bioelectrical impedance vector analysis.  Br J Nutr. 2008;  100 590-595
  • 46 Norman K, Pirlich M, Sorensen J. et al . Bioimpedance vector analysis as a measure of muscle function.  Clin Nutr. 2009;  28 78-82
  • 47 Piccoli A. Identification of operational clues to dry weight prescription in hemodialysis using bioimpedance vector analysis. The Italian Hemodialysis-Bioelectrical Impedance Analysis (HD-BIA) Study Group.  Kidney Int. 1998;  53 1036-1043
  • 48 Nescolarde L, Piccoli A, Roman A. et al . Bioelectrical impedance vector analysis in haemodialysis patients: relation between oedema and mortality.  Physiol Meas. 2004;  25 1271-1280
  • 49 Guglielmi F W, Mastronuzzi T, Pietrini L. et al . The RXc graph in evaluating and monitoring fluid balance in patients with liver cirrhosis.  Ann N Y Acad Sci. 1999;  873 105-111
  • 50 Piccoli A, Pittoni G, Facco E. et al . Relationship between central venous pressure and bioimpedance vector analysis in critically ill patients.  Crit Care Med. 2000;  28 132-137
  • 51 Toso S, Piccoli A, Gusella M. et al . Bioimpedance vector pattern in cancer patients without disease versus locally advanced or disseminated disease.  Nutrition. 2003;  19 510-514

Dr. rer. medic. Kristina Norman

Medizinische Klinik und Poliklinik, Charité – Universitätsmedizin Berlin

Charitéplatz1

10098 Berlin

Phone: +49-30-450-514139

Fax: +49-30-450-514936

Email: kristina.norman@charite.de