Aktuelle Ernährungsmedizin 2010; 35(4): 173-177
DOI: 10.1055/s-0030-1248416
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Ernährung im Ausdauersport

Nutrition for Endurance AthletesA.  Carlsohn1 , F.  Mayer1
  • 1Hochschulambulanz der Universität Potsdam, Zentrum für Sportmedizin, Freizeit-, Gesundheits- und Leistungssport
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
21. April 2010 (online)

Zusammenfassung

Eine bedarfsdeckende, ausgewogene Ernährung zählt zu den wesentlichen Voraussetzungen für Gesundheit und Leistungsfähigkeit. Ausdauersportler haben aufgrund des hohen Energieumsatzes einen erhöhten Bedarf an Makronährstoffen. Insbesondere der Kohlenhydratbedarf zur Energiebereitstellung während einer Belastung sowie zur raschen Glykogenresynthese nach glykogenerschöpfender sportlicher Aktivität unterscheidet sich vom Nichtsportler (ca. 3,5 g / kg / d) und beträgt während durchschnittlicher Trainingsphasen 5–7 g / kg / d. Die Regeneration des Muskelglykogens verläuft biphasisch, mit einer insulinunabhängigen hohen Glykogensyntheserate in der frühen und einer langsamen, insulinabhängigen Glykogensyntheserate in der späten Phase. Spitzensportler sollten daher unmittelbar nach erschöpfenden Belastungen 1,2–1,5 g / kg / h Kohlenhydrate mit moderatem bis hohem glykämischen Index verzehren. Im Einzelfall kann eine hohe Kohlenhydratzufuhr den Anforderungen des Spitzensports bez. eines niedrigen Körpergewichts gegenüberstehen. Ein Körperfettanteil von 5 % bei Männern und 12 % bei Frauen sollte aus gesundheitlicher Sicht jedoch nicht unterschritten werden. Zur Vermeidung von Dehydratation und belastungsinduzierter Hyponatriämie ist insbesondere während Ausdauerbelastungen auf eine adäquate Flüssigkeits- und Elektrolytzufuhr zu achten. Abhängig von Belastungsart und -intensität, Außentemperaturen, Geschlecht und Körpermasse ist eine isotone Flüssigkeitszufuhr von 0,4–0,8 l / h mit einem Natriumgehalt von mindestens 450 mg / l anzuraten.

Abstract

A well-balanced, adequate dietary intake is essential for both health and athletic performance. Compared to sedentary subjects endurance athletes have higher energy demands and subsequently higher macronutrient requirements. Especially carbohydrate requirement is higher than in non-active individuals (approx. 3.5 g / kg / d) to ensure energy availability during exercise and to replenish glycogen stores after exercise. During weeks of moderately intense exercise a carbohydrate intake of 5–7 g / kg / d is recommended. Glycogen synthesis follows a biphasic manner with an insulin-independent rapid synthesis rate during early regeneration and an insulin-dependent slow synthesis rate in the later regeneration period. Therefore, elite athletes should ingest 1.2–1.5 g / kg / h of carbohydrates with a moderate to high glycemic index immediately after exercise. In some cases high carbohydrate intake may result in a conflict with sports specific requirement of a low body weight. However, a minimum of 5 % body fat for male and 12 % for female athletes is recommended to avoid health issues. During endurance exercise an adequate fluid and electrolyte intake is essential to prevent both dehydration and exercise-induced hyponatremia. Fluid replacement recommendations should be assessed on an individual basis by considering exercise intensity and duration, temperature, sex and body weight. For each hour of exercise the consumption of 400–800 ml containing a minimum of 450 mg sodium per litre is recommended.

Literatur

  • 1 Loucks A B. Energy balance and body composition in sports and exercise.  J Sports Sci. 2004;  22 1-14
  • 2 Rodriguez N R, DiMarco N M, Langley S. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance.  J Am Diet Assoc. 2009;  109 509-527
  • 3 Magkos F, Yannakoulia M. Methodology of dietary assessment in athletes: concepts and pitfalls.  Curr Opin Clin Nutr Metab Care. 2003;  6 539-549
  • 4 McArdle W D, Katch F I, Katch V L. Exercise Physiology. Energy, Nutrition and Human Performance. 6th ed. Baltimore, USA; Lippincott Williams & Wilkins 2007
  • 5 Ainsworth B, Haskell W, Whitt M. et al . Compendium of physical activities: an update of activity codes and MET intensities.  Med Sci Sports Exerc. 2000;  32 S498-S516
  • 6 Westerterp K R. Limits to sustainable human metabolic rate.  J Exp Biol. 2001;  204 3183-3187
  • 7 Malina R M. Body composition in athletes: assessment and estimated fatness.  Clin Sports Med. 2007;  26 37-68
  • 8 Burke L M, Millet G, Tarnopolsky M A. Nutrition for distance events.  J Sports Sci. 2007;  25 (Suppl. 1) S29-38
  • 9 Sundgot-Borgen J, Torstveit M K. Prevalence of eating disorders in elite athletes is higher than in the general population.  Clin J Sport Med. 2004;  14 25-32
  • 10 Burrows M, Shepherd H, Bird S. et al . The components of the female athlete triad do not identify all physically active females at risk.  J Sports Sci. 2007;  25 1289-1297
  • 11 Nichols J F, Rauh M J, Lawson M J. et al . Prevalence of the female athlete triad syndrome among high school athletes.  Arch Pediatr Adolesc Med. 2006;  160 137-142
  • 12 Papanek P E. The female athlete triad: an emerging role for physical therapy.  J Orthop Sports Phys Ther. 2003;  33 594-614
  • 13 Achten J, Halson S L, Moseley L. et al . Higher dietary carbohydrate content during intensified running training results in better maintenance of performance and mood state.  J Appl Physiol. 2004;  96 1331-1340
  • 14 Burke L M. Nutrition strategies for the marathon: fuel for training and racing.  Sports Med. 2007;  37 344-347
  • 15 Montero A, Lopez-Varela S, Nova E. et al . The implication of the binomial nutrition-immunity on sportswomen's health.  Eur J Clin Nutr. 2002;  56 (Suppl. 3) S38-41
  • 16 Degoutte F, Jouanel P, Begue R J. et al . Food restriction, performance, biochemical, psychological, and endocrine changes in judo athletes.  Int J Sports Med. 2006;  27 9-18
  • 17 Berardi J M, Price T B, Noreen E E. et al . Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement.  Med Sci Sports Exerc. 2006;  38 1106-1113
  • 18 Williams M B, Raven P B, Fogt D L. et al . Effects of recovery beverages on glycogen restoration and endurance exercise performance.  J Strength Cond Res. 2003;  17 12-19
  • 19 Manore M M. Effect of physical activity on thiamine, riboflavin, and vitamin B-6 requirements.  Am J Clin Nutr. 2000;  72 598S-606S
  • 20 Position of the American Dietetic Association DoC, and the American College of Sports Medicine. Nutrition and athletic performance.  J Am Diet Assoc. 2000;  100 1543-1556
  • 21 Broad E M, Cox G R. What is the optimal composition of an athlete's diet?.  Eur J Sport Sci. 2008;  8 57-65
  • 22 Fudge B W, Westerterp K R, Kiplamai F K. et al . Evidence of negative energy balance using doubly labelled water in elite Kenyan endurance runners prior to competition.  Br J Nutr. 2006;  95 59-66
  • 23 Burke L M, Cox G R, Culmmings N K. et al . Guidelines for daily carbohydrate intake: do athletes achieve them?.  Sports Med. 2001;  31 267-299
  • 24 Tsintzas K, Williams C. Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation.  Sports Med. 1998;  25 7-23
  • 25 Walberg-Rankin J. Dietary carbohydrate as an ergogenic aid for prolonged and brief competitions in sport.  Int J Sport Nutr. 1995;  5 (Suppl.) S13-28
  • 26 Maughan R J, Greenhaff P L, Leiper J B. et al . Diet composition and the performance of high-intensity exercise.  J Sports Sci. 1997;  15 265-275
  • 27 Hawley J A, Gibala M J, Bermon S. Innovations in athletic preparation: role of substrate availability to modify training adaptation and performance.  J Sports Sci. 2007;  25 (Suppl. 1) S115-124
  • 28 Febbraio M A, Steensberg A, Keller C. et al . Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans.  J Physiol. 2003;  549 607-612
  • 29 Hansen A K, Fischer C P, Plomgaard P. et al . Skeletal muscle adaptation: training twice every second day vs. training once daily.  J Appl Physiol. 2005;  98 93-99
  • 30 Coggan A R, Coyle E F. Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance.  Exerc Sport Sci Rev. 1991;  19 1-40
  • 31 Convertino V A, Armstrong L E, Coyle E F. et al . American College of Sports Medicine position stand. Exercise and fluid replacement.  Med Sci Sports Exerc. 1996;  28 i-vii
  • 32 Ivy J L, Goforth Jr H W, Damon B M. et al . Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement.  J Appl Physiol. 2002;  93 1337-1344
  • 33 Saunders M J, Kane M D, Todd M K. Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage.  Med Sci Sports Exerc. 2004;  36 1233-1238
  • 34 van Essen M, Gibala M J. Failure of protein to improve time trial performance when added to a sports drink.  Med Sci Sports Exerc. 2006;  38 1476-1483
  • 35 Breen L, Tipton K D, Jeukendrup A E. No Effect of Carbohydrate-Protein on Cycling Performance and Indices of Recovery.  Med Sci Sports Exerc. 2009 [Epub ahead of print]; 
  • 36 Jeukendrup A E, Jentjens R. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research.  Sports Med. 2000;  29 407-424
  • 37 Jentjens R L, Jeukendrup A E. High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise.  Br J Nutr. 2005;  93 485-492
  • 38 Currell K, Jeukendrup A E. Superior endurance performance with ingestion of multiple transportable carbohydrates.  Med Sci Sports Exerc. 2008;  40 275-281
  • 39 Pfeiffer B, Cotterill A, Grathwohl D. et al . The effect of carbohydrate gels on gastrointestinal tolerance during a 16-km run.  Int J Sport Nutr Exerc Metab. 2009;  19 485-503
  • 40 Hulston C J, Wallis G A, Jeukendrup A E. Exogenous CHO oxidation with glucose plus fructose intake during exercise.  Med Sci Sports Exerc. 2009;  41 357-363
  • 41 Millard-Stafford M, Childers W L, Conger S A. et al . Recovery nutrition: timing and composition after endurance exercise.  Curr Sports Med Rep. 2008;  7 193-201
  • 42 Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery.  Sports Med. 2003;  33 117-144
  • 43 Kraniou Y, Cameron-Smith D, Misso M. et al . Effects of exercise on GLUT-4 and glycogenin gene expression in human skeletal muscle.  J Appl Physiol. 2000;  88 794-796
  • 44 Nielsen J N, Richter E A. Regulation of glycogen synthase in skeletal muscle during exercise.  Acta Physiol Scand. 2003;  178 309-319
  • 45 Pritchett K, Bishop P, Pritchett R. et al . Acute effects of chocolate milk and a commercial recovery beverage on postexercise recovery indices and endurance cycling performance.  Appl Physiol Nutr Metab. 2009;  34 1017-1022
  • 46 Sawka M N, Burke L M, Eichner E R. et al . American College of Sports Medicine position stand. Exercise and fluid replacement.  Med Sci Sports Exerc. 2007;  39 377-390
  • 47 Cheuvront S N, Carter 3rd R, Sawka M N. Fluid balance and endurance exercise performance.  Curr Sports Med Rep. 2003;  2 202-208
  • 48 Noakes T. Fluid replacement during marathon running.  Clin J Sport Med. 2003;  13 309-318
  • 49 Murray B. The role of salt and glucose replacement drinks in the marathon.  Sports Med. 2007;  37 358-360
  • 50 Almond C S, Shin A Y, Fortescue E B. et al . Hyponatremia among runners in the Boston Marathon.  N Engl J Med. 2005;  352 1550-1556

Dr. rer. nat. Anja Carlsohn

Hochschulambulanz der Universität Potsdam
Zentrum für Sportmedizin, Freizeit-, Gesundheits- und Leistungssport

Am Neuen Palais 10

14469 Potsdam

Telefon: 0331/977 1768

Fax: 0331/977 1296

eMail: anja.carlsohn@uni-potsdam.de