RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219166
Air-Stable Diaminophosphine Sulfides as Preligands for Nickel-Catalyzed Cross-Couplings of Unactivated Fluoro(hetero)arenes
Publikationsverlauf
Publikationsdatum:
04. Januar 2010 (online)
Abstract
Air-stable secondary diaminophosphine sulfide preligands enable challenging nickel-catalyzed cross-coupling reactions of electron-deficient as well as electron-rich fluoro(hetero)arenes as electrophiles.
Key words
fluoroarenes - Grignard reagents - ligands - nickel - secondary phosphine sulfide
- 1
Amii H.Uneyama K. Chem. Rev. 2009, 109: 2119 - 2
Activating Unreactive
Substrates
Bolm C.Hahn FE. Wiley-VCH; Weinheim: 2009. - 3
Braun T.Perutz RN. Chem. Commun. 2002, 2749 - 4
Richmond TG. Angew. Chem. Int. Ed. 2000, 39: 3241 - 5
Richmond TG. Top. Organomet. Chem. 1999, 3: 243 - 6
Modern Arylation
Methods
Ackermann L. Wiley-VCH; Weinheim: 2009. - 7
Metal-Catalyzed Cross-Coupling Reactions
2nd
ed.:
de Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. - 8
Mueller K.Faeh C.Diederich F. Science 2007, 317: 1881 - For remarkable recent advance, see:
-
9a
Watson DA.Su M.Teverovskiy G.Zhang Y.García-Fortanet J.Kinzel T.Buchwald SL. Science 2009, 325: 1661 -
9b
Douvris C.Ozerov OV. Science 2008, 321: 1188 ; and references cited therein - For recent representative studies on catalyzed functionali-zations of C-F bonds with metals other than nickel, see:
-
10a
Braun T.Salomon MA.Altenhoner K.Teltewskoi M.Hinze S. Angew. Chem. Int. Ed. 2009, 48: 1818 -
10b
Gu W.Haneline MR.Douvris C.Ozerov OV. J. Am. Chem. Soc. 2009, 131: 11203 -
10c
Reade SP.Mahon MF.Whittlesey MK. J. Am. Chem. Soc. 2009, 131: 1847 -
10d
Meier G.Braun T. Angew. Chem. Int. Ed. 2009, 48: 1546 -
10e
Buckley HL.Wang T.Tran O.Love JA. Organometallics 2009, 28: 2356 -
10f
Nova A.Erhardt S.Jasim NA.Perutz RN.Macgregor SA.McGrady JE.Whitwood AC. J. Am. Chem. Soc. 2008, 130: 15499 -
10g
Erhardt S.Macgregor SA. J. Am. Chem. Soc. 2008, 130: 15490 -
10h
Manabe K.Ishikawa S. Synthesis 2008, 2645 -
10i
Wang T.Alfonso BJ.Love JA. Org. Lett. 2007, 9: 5629 -
10j
Korn TJ.Schade MA.Cheemala MN.Wirth S.Guevara SA.Cahiez G.Knochel P. Synthesis 2006, 5347 ; and references cited therein - 11
Corriu RJP.Masse JP. J. Chem. Soc., Chem. Commun. 1972, 144 - 12
Tamao K.Sumitani K.Kumada M. J. Am. Chem. Soc. 1972, 94: 4374 - 13
Littke AF. In Modern Arylation MethodsAckermann L. Wiley-VCH; Weinheim: 2009. p.25 - For examples of nickel-catalyzed cross-coupling reactions between aryl fluorides and boronic acids, see:
-
14a
Schaub T.Backes M.Radius U. J. Am. Chem. Soc. 2006, 128: 15964 -
14b See also:
Schaub T.Fischer P.Steffen A.Braun T.Radius U.Mix A. J. Am. Chem. Soc. 2008, 130: 9304 - For representative examples, see:
-
15a
Hatekeyama T.Hashimoto S.Ishizuka K.Nakamura M. J. Am. Chem. Soc. 2009, 131: 11949 -
15b
Yoshikai N.Matsuda H.Nakamura E. J. Am. Chem. Soc. 2009, 131: 9590 -
15c
Saeki T.Takashima Y.Tamao K. Synlett 2005, 1771 -
15d
Yoshikai N.Mashima H.Nakamura E. J. Am. Chem. Soc. 2005, 127: 17978 -
15e
Dankwardt JW. J. Organomet. Chem. 2005, 690: 932 -
15f
Böhm VPW.Gstöttmayr CWK.Weskamp T.Herrmann WA. Angew. Chem. Int. Ed. 2001, 40: 3387 -
15g
Tamao K.Sumitani K.Kiso Y.Zembayashi M.Fujioka A.Kodama S.Nakajama I.Minato A.Kumada M. Bull. Chem. Soc. Jpn. 1976, 49: 1958 -
15h
Kiso Y.Tamao K.Kumada M. J. Organomet. Chem. 1973, 50: C12 ; and references cited therein - 16
Ackermann L. Synlett 2007, 507 - 17
Ackermann L. Synthesis 2006, 1557 - 18
Nemoto T.Hamada Y. Chem. Rec. 2007, 7: 150 - Representative examples of HASPO preligands in catalyzed cross-coupling chemistry from our laboratories:
-
19a
Ackermann L.Potukuchi HK. Synlett 2009, 2852 -
19b
Ackermann L.Barfüßer S. Synlett 2009, 808 -
19c
Ackermann L.Mulzer M. Org. Lett. 2008, 10: 5043 -
19d
Ackermann L.Althammer A.Born R. Angew. Chem. Int. Ed. 2006, 45: 2619 -
19e
Ackermann L.Spatz JH.Gschrei CJ.Born R.Althammer A. Angew. Chem. Int. Ed. 2006, 45: 7627 -
19f
Ackermann L.Gschrei CJ.Althammer A.Riederer M. Chem. Commun. 2006, 1419 -
19g
Ackermann L.Althammer A. Org. Lett. 2006, 8: 3457 -
19h
Ackermann L. Org. Lett. 2005, 7: 3123 - 20
Ackermann L.Born R.Spatz JH.Meyer D. Angew. Chem. Int. Ed. 2005, 44: 7216 - 21
Ackermann L.Althammer A. Chem. Unserer Zeit 2009, 43: 74 - 22
Ackermann L.Born R.Spatz JH.Althammer A.Gschrei CJ. Pure Appl. Chem. 2006, 78: 209 - 23 For an example of a secondary phosphine
sulfide preligand in a cross-coupling of aryl chlorides, see:
Li GW.Marshall WJ. Organometallics 2002, 21: 590
References and Notes
Synthesis of 1,3-Bis-(2,6-diisopropylphenyl)[1,3,2]-diazaphospholane-2-sulfide (2)
1,3-Bis-(2,6-diisopropylphenyl)[1,3,2]diazaphospholane-2 oxide
(3.06 g, 7.17 mmol) and Lawesson’s reagent (2.90 g, 7.17
mmol) were stirred in PhMe (25 mL) for 3 h at 110 ˚C. At
ambient temperature, the reaction mixture was filtered, and the
solvent was removed in vacuo. The remaining residue was purified
by column chromatography (n-hexane-EtOAC = 4:1)
to yield 2 (2.40 g, 76%) as a
colorless solid (mp 189-191 ˚C). ¹H
NMR (300 MHz, CDCl3): δ = 8.65 (d, J = 562.5
Hz, 1 H), 7.31 (t, J = 7.3
Hz, 2 H), 7.21 (dd, J = 7.7,
1.6 Hz, 2 H), 7.16-7.04 (m, 2 H), 3.67 (sept, J = 6.9 Hz,
6 H), 3.29 (sept, J = 6.7
Hz, 2 H), 1.37 (d, J = 6.7
Hz, 6 H), 1.32 (d, J = 7.1
Hz, 6 H), 1.29 (d, J = 7.5
Hz, 6 H), 1.28 (d, J = 7.1
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 150.2 (Cq),
148.8 (Cq), 133.4 (Cq, J = 5.0 Hz), 128.4 (CH),
124.7 (CH), 123.8 (CH), 50.4 (CH2), 50.3 (CH2),
29.1 (CH), 28.8 (CH), 25.8 (CH3), 25.0 (CH3),
24.8 (CH3), 24.4 (CH3). ³¹P NMR
(121 MHz, CDCl3): δ = 47.65.
IR (KBr): 2962, 2926, 2867, 2306, 1464, 1448, 1382, 1323, 1261,
1086, 984, 762 cm-¹. MS (EI): m/z (%) = 442
(2) [M+], 409 (100), 221 (2), 191
(13), 160 (3), 132 (4), 43 (6). ESI-HRMS: m/z calcd
for C26H40N2PS [M + H+]:
443.2650; found: 443.2644.
Synthesis of 5a
(Table 1, Entry 9); Typical Procedure
[Ni(acac)2] (7
mg, 0.03 mmol, 3.0 mol%) and 2 (13
mg, 0.03 mmol, 3.0 mol%) were stirred in THF (2.0 mL) for
10 min at ambient temperature under N2. Compound 3d (126 mg, 1.00 mmol) was added, and the
solution was stirred for additional 5 min. Thereafter, 4d (1.75 M in THF, 0.85 mL, 1.50 mmol)
was added, and the resulting solution was stirred for 21 h at ambient
temperature. EtOAc (75 mL) and H2O (75 mL) were added,
and the separated aqueous phase was extracted with EtOAc (2 × 75
mL). The combined organic layers were dried over MgSO4 and
concentrated in vacuo. The remaining residue was purified by column
chromatog-raphy on silica gel (n-hexane-EtOAc,
300:1 → 200:1 → 150:1 → 100:1) to yield 5a (160 mg, 87%) as a colorless solid
(mp 88-89 ˚C). ¹H
NMR (300 MHz, CDCl3): δ = 7.61-7.51
(m, 4 H), 7.40 (md, J = 8.1
Hz, 2 H), 7.3 (d, J = 7.4
Hz, 1 H), 6.96 (md, J = 8.9
Hz, 2 H), 3.87 (s, 3 H). ¹³C NMR (75
MHz, CDCl3): δ = 159.1
(Cq), 140.8 (Cq), 133.7 (Cq), 128.7
(CH), 128.1 (CH), 126.7 (CH), 126.6 (CH), 114.2 (CH), 55.3 (OCH3).
IR (KBr): 2929, 2839, 1611, 1519, 1487, 1044, 836, 571, 438, 411
cm-¹. MS (EI): m/z (%) = 184
(100) [M+], 169 (35), 141
(24), 115 (12), 92 (2), 76 (2), 63 (2). ESI-HRMS: m/z calcd
for C13H12O: 184.0888; found: 184.0881. The
spectral data are in accordance with those reported in the literature.²0
Analytical Data
2-Methyl-6-(4-methoxyphenyl)quinoline (5n)
Mp 117-118 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 8.04
(d, J = 8.3
Hz, 2 H), 7.93-7.34 (m, 2 H), 7.63 (md, J = 8.9
Hz, 2 H), 7.26 (d, J = 8.5
Hz, 1 H), 7.00 (md, J = 8.9
Hz, 2 H), 3.84 (s, 3 H), 2.73 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 159.3
(Cq), 158.6 (Cq), 147.0 (Cq), 138.0
(Cq), 136.2 (CH), 132.9 (Cq), 128.9 (CH),
128.9 (CH), 128.3 (Cq), 126.7 (CH), 124.4 (CH), 122.3
(CH), 114.3 (CH), 55.3 (OCH3), 25.3 (CH3).
IR (KBr): 2964, 2925, 1599, 1521, 1492, 1285, 1260, 1243, 1191,
1036, 829 cm-¹. MS (EI): m/z (%) = 249 (100) [M+],
234 (36), 206 (30), 124 (6), 103 (5), 51 (2). ESI-HRMS: m/z calcd for C17H16NO [M + H+]:
250.1232; found: 250.1226.
2-Methyl-6-(4-methylphenyl)quinoline (5o)
Mp 120-121 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 8.10-8.02
(m, 2 H), 7.96-7.88 (m, 2 H), 7.59 (md, J = 8.2
Hz, 2 H), 7.27 (md, J = 8.4
Hz, 3 H), 2.74 (s, 3 H), 2.40 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 158.8
(Cq), 147.1 (Cq), 138.3 (Cq), 137.5
(Cq), 137.3 (Cq), 136.2 (CH), 129.6 (CH), 129.0
(CH), 128.9 (CH), 127.1 (CH), 126.6 (Cq), 124.8 (CH),
122.3 (CH), 25.4 (CH3), 21.1 (CH3). IR (KBr):
2917, 2854, 1619, 1598, 1563, 1518, 1492, 1391, 1313, 1013, 892, 816
cm-¹. MS (EI): m/z (%) = 233
(100) [M+], 217 (3), 189 (2),
116 (4). ESI-HRMS: m/z calcd
for C17H16N [M + H+]: 234.1282;
found: 234.1277.
2-Methyl-6-(2-methylphenyl)quinoline (5p)
¹H NMR
(300 MHz, CDCl3): δ = 8.03
(d, J = 7.7
Hz, 2 H), 7.71-7.58 (m, 2 H), 7.34-7.21 (m, 5
H), 2.76 (s, 3 H), 2.29 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 158.9
(Cq), 146.8 (Cq), 141.2 (Cq), 139.4
(Cq), 136.2 (CH), 135.5 (Cq), 131.2 (CH),
130.4 (CH), 129.9 (CH), 128.1 (CH), 127.5 (CH), 127.3 (CH), 126.2
(Cq), 125.8 (CH), 122.2 (CH), 25.4 (CH3), 20.5
(CH3). IR (KBr): 2952, 2920, 1600, 1561, 1487, 1454, 1373,
1312, 841, 815, 757, 726 cm-¹. MS (EI): m/z (%) = 233 (100) [M+],
218 (11), 189 (6), 165 (3), 115 (6), 91 (2), 63 (2). ESI-HRMS: m/z calcd for C17H16N [M + H+]:
234.1277; found: 234.1281.
2-Methyl-6-(2,4,6-trimethylphenyl)quinoline (5q)
¹H NMR
(300 MHz, CDCl3): δ = 8.04
(d, J = 9.1
Hz, 1 H), 8.02 (d, J = 8.7
Hz, 1 H), 7.52 (d, J = 1.8
Hz, 1 H), 7.45 (dd, J = 8.4,
1.8 Hz, 1 H), 7.29 (d, J = 8.4
Hz, 1 H), 6.96 (s, 2 H), 2.76 (s, 3 H), 2.31 (s, 3 H), 2.00 (s,
6 H). ¹³C NMR (75 MHz, CDCl3): δ = 158.8
(Cq), 146.8 (Cq), 138.6 (Cq), 138.2
(Cq), 136.9 (Cq), 136.1 (Cq), 136.0
(CH), 131.5 (CH), 128.6 (CH), 128.1 (CH), 127.4 (CH), 126.5 (Cq),
122.1 (CH), 25.3 (CH3), 21.0 (CH3), 20.8 (CH3).
IR (KBr): 2949, 2917, 2856, 1599, 1563, 1483, 1375, 1309, 1259,
1221, 842, 812 cm-¹. MS (EI): m/z (%) = 261
(100) [M+], 246 (42), 231
(9), 143 (83), 128 (10), 115 (13), 85 (23), 57 (26), 43 (33). ESI-HRMS:
m/z calcd C19H20N [M + H+]:
262.1595; found: 262.1590.