Subscribe to RSS
DOI: 10.1055/s-0029-1217380
Asymmetric Synthesis of Functionalized 3,4-Dihydronaphthalenes via an Organocatalytic Domino Nitroalkane-Michael/Aldol Condensation Reaction
Publication History
Publication Date:
15 June 2009 (online)
Abstract
An organocatalytic domino nitroalkane-Michael addition/aldol condensation reaction has been developed. This process provides an efficient asymmetric synthesis of trisubstituted 3,4-dihydronaphthalenes in moderate to good yields (40-75%) and high stereoselectivities (de >98%, ee = 91 to >99%).
Key words
dihydronaphthalenes - organocatalysis - domino reaction - Michael addition - aldol condensation
- For recent reviews on organocatalysis, see:
-
1a
Berkessel A.Gröger H. Asymmetric Organocatalysis Wiley-VCH; Weinheim: 2005. -
1b
Dalko PI. Enantioselective Organocatalysis Wiley-VCH; Weinheim: 2007. - 1c Special issue on organocatalysis: Chem. Rev. 2007, 107: issue 12
-
1d
Pellissier H. Tetrahedron 2007, 63: 9267 -
1e
Dondoni A.Massi A. Angew. Chem. Int. Ed. 2008, 47: 4638 ; Angew. Chem. 2008, 120, 4716 -
1f
Kotsuki H.Ikishima H.Okuyama A. Heterocycles 2008, 75: 493 -
1g
Kotsuki H.Ikishima H.Okuyama A. Heterocycles 2008, 75: 757 -
1h
Enders D.Narine AA. J. Org. Chem. 2008, 73: 7857 -
1i
Melchiorre P.Marigo M.Carlone A.Bartoli G. Angew. Chem. Int. Ed. 2008, 47: 6138 ; Angew. Chem. 2008, 120, 6232 - For recent reviews on domino reactions, see:
-
2a
Tietze LF. Chem. Rev. 1996, 96: 115 -
2b
Tietze LF.Brasche G.Gericke K. Domino Reactions in Organic Synthesis Wiley-VCH; Weinheim: 2006. -
2c
Pellissier H. Tetrahedron 2006, 62: 1619 -
2d
Pellissier H. Tetrahedron 2006, 62: 2143 -
2e
Nicolaou KC.Edmonds DJ.Bulger PG. Angew. Chem. Int. Ed. 2006, 45: 7134 ; Angew. Chem. 2006, 118, 7292 -
2f
Chapman CJ.Frost CG. Synthesis 2007, 1 - For reviews on organocatalytic domino reactions, see:
-
3a
Enders D.Grondal C.Hüttl MRM. Angew. Chem. Int. Ed. 2007, 46: 1570 ; Angew. Chem. 2007, 119, 1590 -
3b
Yu X.Wang W. Org. Biomol. Chem. 2008, 6: 2037 - For selected examples of organocatalytic domino reactions, see:
-
4a
Yang JW.Fonseca MTH.List B. J. Am. Chem. Soc. 2005, 127: 15036 -
4b
Huang Y.Walji AM.Larsen CH.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 15051 -
4c
Enders D.Hüttl MRM.Grondal C.Raabe G. Nature 2006, 441: 861 -
4d
Wang W.Li H.Wang J.Zu L. J. Am. Chem. Soc. 2006, 128: 10354 -
4e
Enders D.Hüttl MRM.Runsink J.Raabe G.Wendt B. Angew. Chem. Int. Ed. 2007, 46: 467 ; Angew. Chem. 2007, 119, 471 -
4f
Enders D.Narine AA.Benninghaus TR.Raabe G. Synlett 2007, 1667 -
4g
Carlone A.Cabrera S.Marigo M.Jørgensen KA. Angew. Chem. Int. Ed. 2007, 46: 1101 ; Angew. Chem. 2007, 119, 1119 -
4h
Hayashi Y.Okano T.Aratake S.Hazelard D. Angew. Chem. Int. Ed. 2007, 46: 4922 ; Angew. Chem. 2007, 119, 5010 -
4i
Vicario JL.Reboredo L.Badía D.Carrillo L. Angew. Chem. Int. Ed. 2007, 46: 5168 ; Angew. Chem. 2007, 119, 5260 -
4j
Rueping M.Sugiono E.Merino E. Angew. Chem. Int. Ed. 2008, 47: 3046 ; Angew. Chem. 2008, 120, 3089 -
4k
Enders D.Wang C.Bats JW. Angew. Chem. Int. Ed. 2008, 47: 7539 ; Angew. Chem. 2008, 120, 7649 -
4l
Zhao G.-L.Rios R.Vesley J.Eriksson L.Córdova A. Angew. Chem. Int. Ed. 2008, 47: 8468 ; Angew. Chem. 2008, 120, 8596 -
4m
Lu M.Zhu D.Lu Y.Hou Y.Tan B.Zhong G. Angew. Chem. Int. Ed. 2008, 47: 10187 ; Angew. Chem. 2008, 120, 10341 -
4n
Enders D.Hüttl MRM.Raabe G.Bats JW. Adv. Synth. Catal. 2008, 350: 267 -
4o
Kotame P.Hong B.-C.Liao J.-H. Tetrahedron Lett. 2009, 50: 704 -
4p
Franzén J.Fisher A. Angew. Chem. Int. Ed. 2009, 48: 787 ; Angew. Chem. 2009, 121, 801 - For reviews on organocatalytic Michael additions, see:
-
5a
Tsogoeva SB. Eur. J. Org. Chem. 2007, 1701 -
5b
Sulzer-Mossé S.Alexakis A. Chem. Commun. 2007, 3123 -
5c
Vicario JL.Badía D.Carrillo L. Synthesis 2007, 2065 -
5d
Almaºi D.Alonso DA.Nájera C. Tetrahedron: Asymmetry 2007, 18: 299 - For selected examples of organocatalytic nitroalkane-Michael additions with enals or enones as electrophile, see:
-
6a
Hanessian S.Pham V. Org. Lett. 2000, 2: 2975 -
6b
Corey EJ.Zhang F.-Y. Org. Lett. 2000, 2: 4257 -
6c
Halland N.Hazell RG.Jørgensen KA. J. Org. Chem. 2002, 67: 8331 -
6d
Tsogoeva SB.Jagtap SB.Ardemasova ZA.Kalikhevich VN. Eur. J. Org. Chem. 2004, 4014 -
6e
Vukalya B.Varga S.Csámpai A.Soós T. Org. Lett. 2005, 7: 1967 -
6f
Mitchell CET.Brenner SE.Ley SV. Chem. Commun. 2005, 5346 -
6g
Prieto A.Halland N.Jørgensen KA. Org. Lett. 2005, 7: 3897 -
6h
Ooi T.Takada S.Fujioka S.Maruoka K. Org. Lett. 2005, 7: 5143 -
6i
Mitchell CET.Brenner SE.García-Fortanet J.Ley SV. Org. Biomol. Chem. 2006, 4: 2039 -
6j
Hanessian S.Shao Z.Warrier JS. Org. Lett. 2006, 8: 4787 -
6k
Tsogoeva SB.Jagtap SB.Ardemasova ZA. Tetrahedron: Asymmetry 2006, 17: 989 -
6l
Gotoh H.Ishikawa H.Hayashi Y. Org. Lett. 2007, 9: 5307 -
6m
Hojabri L.Hartikka L.Moghaddam FM.Arvidsson PI. Adv. Synth. Catal. 2007, 349: 740 -
6n
Vakulya B.Varga S.Soós T. J. Org. Chem. 2008, 73: 3475 -
6o
Li P.Wang Y.Liang X.Ye J. Chem. Commun. 2008, 3302 -
6p
Zhong S.Chen Y.Petersen JL.Akhmedov NG.Shi X. Angew. Chem. Int. Ed. 2009, 48: 1279 ; Angew. Chem. 2009, 121, 1305 - For selected examples of organocatalytic domino reactions involving nitroalkane-Michael additions with enals or enones as electrophiles, see refs 4c, 4e, 4g, 4n, 4o, and:
-
7a
Reyes E.Jiang H.Milelli A.Elsner P.Hazell RG.Jørgensen KA. Angew. Chem. Int. Ed. 2007, 46: 9202 ; Angew. Chem. 2007, 119, 9362 -
7b
Zhao G.-L.Ibrahem I.Dziedzic P.Sun J.Bonneau C.Córdova A. Chem. Eur. J. 2008, 14: 10007 -
7c
Lv J.Zhang J.Lin Z.Wang Y. Chem. Eur. J. 2009, 15: 972 -
7d
Zu L.Zhang S.Xie H.Wang W. Org. Lett. 2009, 11: 1627 - 8 For a review on organocatalytic aldol
reactions, see:
Guillena G.Nájera C.Ramón DJ. Tetrahedron: Asymmetry 2007, 18: 2249 - For selected examples of organocatalytic intramolecular aldol reactions, see:
-
9a
Pidathala C.Hoang L.Vignola N.List B. Angew. Chem. Int. Ed. 2003, 42: 2785 ; Angew. Chem. 2003, 115, 2891 -
9b
Kriis K.Kanger T.Laars M.Müürisepp A.-M.Pehk T.Lopp M. Synlett 2006, 1699 -
9c
Enders D.Niemeier O.Straver L. Synlett 2006, 3399 -
9d
Hayashi Y.Sekiziwa H.Yamaguchi J.Gotoh H. J. Org. Chem. 2007, 72: 6493 -
9e
Yoshitomi Y.Makino K.Hamada Y. Org. Lett. 2007, 9: 2457 - For selected examples of organocatalytic domino reactions involving intramolecular aldol reactions, see refs 4c-g, 4n, 4o and:
-
10a
Halland N.Abruel PS.Jørgensen KA. Angew. Chem. Int. Ed. 2004, 43: 1272 ; Angew. Chem. 2004, 116, 1292 -
10b
Brandau B.Maerten E.Jørgensen KA.
J. Am. Chem. Soc. 2006, 128: 14986 -
10c
Govender T.Hojbri L.Moghaddam FM.Arvidsson PI. Tetrahedron: Asymmetry 2006, 17: 1763 -
10d
Wang J.Li H.Xie H.Zu L.Shen X.Wang W. Angew. Chem. Int. Ed. 2007, 46: 9050 ; Angew. Chem. 2007, 119, 9208 -
10e
Li H.Wang J.Xie H.Zu L.Jiang W.Duesler EN.Wang W. Org. Lett. 2007, 9: 965 -
10f
Hong B.-C.Nimje RY.Sadani AA.Liao J.-H. Org. Lett. 2008, 10: 2345 -
10g
Penon O.Carlone A.Mazzanti A.Locatelli M.Sambri L.Bartoli G.Melchiorre P. Chem. Eur. J. 2008, 14: 4788 - For reviews on diphenylprolinol TMS-ether, see:
-
11a
Palomo C.Mielgo A. Angew. Chem. Int. Ed. 2006, 45: 7876 ; Angew. Chem. 2006, 118, 8042 -
11b
Mielgo A.Palomo C. Chem. Asian J. 2008, 922
References and Notes
Compound 3c: CCDC-725063 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallo-graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
13
General Procedure:
To a solution of 2-(nitromethyl)-benzaldehyde (1;
1.0 mmol) and α,β-unsatured aldehyde
2 (1.1 mmol, 1.1 equiv) in Et2O
(2 mL), was added (S)-di-phenylprolinol
TMS-ether [(S)-4;
0.05 mmol, 5 mol%]. The reaction mixture was stirred
at the temperature and for the time displayed in Table
[²]
.
Workup A: Direct
purification of the reaction mixture by flash chromatography afforded
3,4-dihydronaphthalenes 3 (pentane-Et2O,
2-10:1).
Workup B: Direct suction through a funnel
followed by washing with Et2O afforded 3c.
Workup
C: The reaction mixture was suctioned through a funnel and washed
with Et2O. Purification of the obtained solid by flash
chromatography (silica gel, pentane-Et2O, 1:3)
afforded 3d.
(3
R
,4
S
)-3-(2-Methoxyphenyl)-4-nitro-3,4-dihydro-naphthalene-2-carbaldehyde
(3c; Figure 2): Isolated as a colorless solid (206 mg, 67%).
The ee (>99%) was determined by HPLC on a chiral
stationary phase [Chiralcel OD; n-heptane-i-PrOH (8:2); 1.0 mL/min, t
R
= 9.04 min(major),
10.29 min (minor, based on the racemic mixture)]; mp 182 ˚C; [α]D
²0 -482
(c 1.0, CHCl3); IR (KBr): 3310
(w), 3000 (w), 2946 (w), 2823 (m), 2728 (w), 2324 (w), 2268 (w),
2184 (w), 2048 (w), 1989 (w), 1942 (w), 1735 (w), 1701 (w), 1663
(vs), 1627 (s), 1599 (m), 1570 (m), 1538 (vs), 1489 (s), 1460 (s),
1435 (m), 1399 (s), 1358 (s), 1327 (m), 1289 (s), 1273 (s), 1245
(vs), 1192 (w), 1158 (vs), 1105 (s), 1052 (s), 1028 (s), 961 (w),
924 (s), 855 (m), 819 (m), 755 (vs), 704 (s) cm-¹; ¹H
NMR (400 MHz, CDCl3): δ = 3.95 (s,
3 H, OCH3), 5.48 (br s, J = <2
Hz, 1 H, H-3), 5.62 (br s, J = <2
Hz, 1 H, H-4), 6.60 (dd, J = 7.6,
1.6 Hz, 1 H, H-6′), 6.65 (td, J = 7.6, 0.8 Hz,
1 H, H-5′), 6.91 (d, J = 7.6
Hz, 1 H, H-3′), 7.19 (td, J = 7.6,
1.6 Hz, 1 H, H-4′), 7.36-7.42
(m, 2 H, H-5,7), 7.48-7.54 (m, 2 H, H-6,8),
7.68 (s, 1 H, H-1), 9.73 (s, 1 H, CHO); ¹³C
NMR (101 MHz, CDCl3): δ = 34.5 (C-3),
55.6 (OCH3), 86.4 (C-4), 110.8 (C-3′), 120.3
(C-5′), 122.5 (C-1′), 126.9 (C-6′), 128.0
(C-9), 129.0 (C-4′), 129.4 (C-8), 130.9 (C-6), 131.3 (C-5),
131.6 (C-7), 131.7 (C-10), 137.8 (C-2), 144.1 (C-1), 156.7 (C-2′),
190.7 (CHO); MS (EI, 70 eV): m/z (%) = 309.4 (5.8)
[M+], 277.3 (2.2), 263.3 (74),
245.3 (50), 235.4 (100), 231.4 (24), 202.3 (65), 189.3 (19), 176.3
(2.7), 165.3 (8.8), 155.3 (7.5), 152.3 (2.7), 127.3 (9.5), 117.6
(9.1), 101.3 (19), 94.8 (7.2), 83.1 (4.7), 77.4 (10), 57.4 (2.2),
51.4 (4.0), 43.3 (2.2); Anal. Calcd for C18H15NO4:
C, 69.89; H, 4.89; N, 4.53. Found: C, 69.92; H, 4.94; N, 4.50.