Synlett 2009(8): 1189-1207  
DOI: 10.1055/s-0029-1216654
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

The Catalytic Asymmetric Intramolecular Stetter Reaction

Javier Read de Alaniz, Tomislav Rovis*
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
Fax: +1(970)4911801; e-Mail: rovis@lamar.colostate.edu;
Weitere Informationen

Publikationsverlauf

Received 30 August 2008
Publikationsdatum:
22. April 2009 (online)

Abstract

This Account chronicles our efforts in the development of the catalytic asymmetric Stetter reaction using chiral triazolium salts as small molecule organic catalysts. Advances in the mechanistically related azolium-catalyzed asymmetric benzoin reaction are discussed, particularly as they apply to catalyst design. A chronological treatise of reaction discovery, catalyst optimization and reactivity extension follows.

1 Introduction

2 Proposed Mechanism of the Benzoin and Stetter Reactions

3 The Benzoin Reaction

4 Synthesis of Chiral Bicyclic Triazolium Salts

4.1 Aminoindanol-Derived Bicyclic Scaffold

4.2 Phenylalanine-Derived Bicyclic Scaffold

5 The Intermolecular Stetter Reaction

6 The Asymmetric Intramolecular Stetter Reaction

6.1 Recent Contributions to the Asymmetric Intramolecular Stetter Reaction

6.2 Comparison of the Asymmetric Intramolecular Stetter ­Reaction with Two Different Triazolium Carbene Scaffolds

6.3 Scope of the Intramolecular Stetter Reaction with Different Tethers

6.4 Electronic Effects of the Aromatic Backbone of the Aldehyde on the Intramolecular Stetter Reaction

6.5 Effects of the Michael Acceptor on the Asymmetric Intra-molecular Stetter Reaction

6.6 The Asymmetric Intramolecular Stetter Reaction of Aliphatic Aldehydes

7 Effects of Pre-existing Stereocenters on the Intramolecular Stetter Reaction

8 Synthesis of Quaternary Stereocenters via the Asymmetric Intramolecular Stetter Reaction

9 Synthesis of Contiguous Stereocenters via the Asymmetric Intramolecular Stetter Reaction

10 Asymmetric Synthesis of Hydrobenzofuranones via the Intramolecular Stetter Reaction

11 Applications to Total Synthesis

12 Summary and Outlook

    References

  • For reviews, see:
  • 1a Regitz M. Angew. Chem., Int. Ed. Engl.  1996,  35:  725 
  • 1b Bourissou D. Guerret O. Gabbai FP. Bertrand G. Chem. Rev.  2000,  100:  39 
  • 1c Herrmann WA. Angew. Chem. Int. Ed.  2002,  41:  1291 
  • For reviews, see:
  • 2a Enders D. Balensiefer T. Acc. Chem. Res.  2004,  37:  534 
  • 2b Johnson JS. Angew. Chem. Int. Ed.  2004,  43:  1326 
  • 2c Pohl M. Lingen B. Müller M. Chem. Eur. J.  2002,  8:  5288 
  • 2d Nair V. Bindu S. Sreekumar V. Angew. Chem. Int. Ed.  2004,  43:  5130 
  • 2e Zeitler K. Angew. Chem. Int. Ed.  2005,  44:  7506 
  • 2f Christmann M. Angew. Chem. Int. Ed.  2005,  44:  2632 
  • 2g Webber P. Krische MJ. Chemtracts  2007,  19:  262 
  • 3 Seebach D. Angew. Chem., Int. Ed. Engl.  1979,  18:  239 
  • For reviews, see:
  • 4a Albright JD. Tetrahedron  1983,  39:  3207 
  • 4b Aitken RA. Thomas AW. Adv. Heterocycl. Chem.  2001,  79:  89 
  • For examples of the benzoin reaction that are not referenced later in the text, see:
  • 5a Hachisu Y. Bode JW. Suzuki K. J. Am. Chem. Soc.  2003,  125:  8432 
  • 5b For examples of the benzoin reaction with acylsilanes, see: Enders D. Niemeier O. Balensiefer T. Angew. Chem. Int. Ed.  2006,  45:  1463 
  • 5c Linghu X. Johnson JS. Angew. Chem. Int. Ed.  2003,  42:  2534 
  • 5d Linghu X. Potnick JR. Johnson JS. J. Am. Chem. Soc.  2004,  126:  3070 
  • 6 Stetter H. Kuhlmann H. In Organic Reactions   Vol. 40:  Paquette LA. Wiley & Sons; New York: 1991.  p.407 
  • 7a Tomioka K. Koga K. Noncatalytic Additions to α,β-Unsaturated Carbonyl Compounds, In Asymmetric Synthesis   Vol. 2:  Morrison JD. Academic Press; New York: 1983.  p.201 
  • 7b Yoshikoshi A. Miyashita M. Acc. Chem. Res.  1985,  18:  284 
  • 7c Rosini G. Ballini R. Synthesis  1988,  833 
  • 8 Lapworth A. J. Chem. Soc.  1903,  83:  995 
  • For the mechanism of the thiamine-catalyzed benzoin reaction, see:
  • 9a Breslow R. J. Am. Chem. Soc.  1958,  80:  3719 
  • 9b Breslow R. Kim R. Tetrahedron Lett.  1994,  35:  699 
  • 9c White M. Leeper F. J. Org. Chem.  2001,  66:  5124 
  • 10 Wöhler F. Liebig J. Ann. Pharm. (Lemgo, Ger.)  1832,  3:  249 
  • 11 Ugai T. Dokawa T. Tsubokawa S. J. Pharm. Soc. Jpn.  1943,  63:  296 
  • 12 Pohl M. Lingen B. Müller M. Chem. Eur. J.  2002,  8:  5289 
  • 13 Sheehan JC. Hunnemann DH. J. Am. Chem. Soc.  1966,  88:  3666 
  • 14 Sheehan JC. Hara T. J. Org. Chem.  1974,  39:  1196 
  • 15a Tagaki W. Tamura Y. Yano Y. Bull. Chem. Soc. Jpn.  1980,  53:  478 
  • 15b Martí J. Castells J. López-Calahorra F. Tetrahedron Lett.  1993,  34:  521 
  • 15c Yamashita K. Sasaki S.-i. Osaki T. Nango M. Tsuda K. Tetrahedron Lett.  1995,  36:  4817 
  • 16 Igau A. Grutzmacher H. Baceiredo A. Trinquier G. Betrand G. Angew. Chem., Int. Ed. Engl.  1989,  28:  621 
  • 17 Arduengo AJ. Harlow RL. Kline M. J. Am. Chem. Soc.  1991,  113:  361 
  • 18 Enders D. Breuer K. Teles JH. Helv. Chim. Acta  1996,  79:  1217 
  • 19a Knight RL. Leeper FJ. Tetrahedron Lett.  1997,  38:  3611 
  • 19b Gerhard AU. Leeper FJ. Tetrahedron Lett.  1997,  38:  3615 
  • 20 Dvorak CA. Rawal VH. Tetrahedron Lett.  1998,  39:  2925 
  • 21 Knight RL. Leeper FJ. J. Chem. Soc., Perkin Trans. 1  1998,  1891 
  • 22 Enders D. Kallfass U. Angew. Chem. Int. Ed.  2002,  41:  1743 
  • 23 Dünkelmann P. Kolter-Jung D. Nitsche A. Demir AS. Siegert P. Lingen B. Baumann M. Pohl M. Müller M. J. Am. Chem. Soc.  2002,  124:  12084 
  • 24a Enders D. Niemeier O. Balensiefer T. Angew. Chem. Int. Ed.  2006,  45:  1463 
  • 24b Enders D. Niemeier O. Raabe G. Synlett  2006,  2431 
  • 25 Takikawa H. Hachisu Y. Bode JW. Suzuki K. Angew. Chem. Int. Ed.  2006,  45:  3492 
  • 26 Mennen SM. Miller SJ. J. Org. Chem.  2007,  72:  5260 
  • 27 Linghu X. Potnick JR. Johnson JS. J. Am. Chem. Soc.  2004,  126:  3070 
  • 28 Kerr MS. Read de Alaniz J. Rovis T. J. Org. Chem.  2005,  70:  5725 
  • 29 Rovis T. Chem. Lett.  2008,  37:  2 
  • 30 Ghosh AK. Fidanze S. Senanayake CH. Synthesis  1998,  937 
  • 31 Norman BH. Kroin JS. J. Org. Chem.  1996,  61:  4990 
  • 32a Meyers AI. Tavares FX. J. Org. Chem.  1996,  61:  8207 
  • (b) Smrcina M. Majer P. Majerová E. Guerassina TA. Eissenstat MA. Tetrahedron  1997,  53:  12867 
  • 33a Enders D. Breuer K. Addition of Acyl Carbanion Equivalents to Carbonyl Groups and Enones, In Comprehensive Asymmetric Catalysis I-III   Vol. 3:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer-Verlag; Berlin: 1999.  p.1093 
  • 33b Enders D. Balensiefer T. Acc. Chem. Res.  2004,  37:  534 
  • 34 Nahm MR. Potnick JR. White PS. Johnson JS. J. Am. Chem. Soc.  2006,  128:  2751 ; and references cited therein
  • For related examples of acylsilanes in the Stetter reaction, see:
  • 35a Mattson AE. Bharadwaj AR. Scheidt KA. J. Am. Chem. Soc.  2004,  126:  2314 
  • 35b Bharadwaj AR. Scheidt KA. Org. Lett.  2004,  6:  2465 
  • 36 Mattson AE. Zuhl AM. Reynolds TE. Scheidt KA. J. Am. Chem. Soc.  2006,  128:  4932 
  • 37a Ciganek E. Synthesis  1995,  1311 
  • 37b For a seminal example of an intramolecular Stetter reaction, see: Trost BM. Shuey CD. DiNinno F. McElvain SS. J. Am. Chem. Soc.  1979,  101:  1284 
  • 38 Enders D. Breuer K. Runsink J. Teles JH. Helv. Chim. Acta  1996,  79:  1899 
  • 39 Pesch J. Harms K. Bach T. Eur. J. Org. Chem.  2004,  2025 
  • 40 Mennen SM. Blank JT. Tran-Dubé MB. Imbriglio JE. Miller SJ. Chem. Commun.  2005,  195 
  • 41 Matsumoto Y. Tomioka K. Tetrahedron Lett.  2006,  47:  5843 
  • 42a Kerr MS. Read de Alaniz J. Rovis T. J. Am. Chem. Soc.  2002,  124:  10298 
  • 42b Read de Alaniz J. Kerr MS. Moore JL. Rovis T. J. Org. Chem.  2008,  73:  2033 
  • 45 Kerr MS. Rovis T. Synlett  2003,  1934 
  • 46a Minowa N. Hirayama M. Fukatsu S. Tetrahedron Lett.  1984,  25:  1147 
  • 46b Ruiz M. Ojea V. Shapiro G. Weber HP. Pombo-Villar E. Tetrahedron Lett.  1994,  35:  4551 
  • 46c Hayashi T. Senda T. Takaya Y. Ogasawara M. J. Am. Chem. Soc.  1999,  121:  11591 
  • 46d Fernández M. Diaz A. Guillin JJ. Blanco O. Ruiz M. Ojea V. J. Org. Chem.  2006,  71:  6958 
  • 46e Kondoh A. Yorimitsu H. Oshima K. J. Am. Chem. Soc.  2007,  129:  6996 
  • 46f Nishida G. Noguchi K. Hirano M. Tanaka K. Angew. Chem. Int. Ed.  2008,  47:  3410 
  • 46g Sulzer-Mossé S. Tissot M. Alexakis A. Org. Lett.  2007,  9:  3749 
  • 46h Capuzzi M. Perdicchia D. Jørgensen KA. Chem. Eur. J.  2008,  14:  128 
  • 47 Cullen SC. Rovis T. Org. Lett.  2008,  10:  3141 
  • 48 Reynolds NT. Rovis T. Tetrahedron  2005,  61:  6368 
  • 49a Corey EJ. Guzman-Perez A. Angew. Chem. Int. Ed.  1998,  37:  389 
  • 49b Christoffers J. Baro A. Angew. Chem. Int. Ed.  2003,  42:  1688 
  • 49c Douglas CJ. Overman LE. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  5363 
  • 50 Kerr MS. Rovis T. J. Am. Chem. Soc.  2004,  126:  8876 
  • 51 Trost BM. Shuey CD. DiNinno F. McElvain SS. J. Am. Chem. Soc.  1979,  101:  1284 
  • 52 Moore JL. Kerr MS. Rovis T. Tetrahedron  2006,  62:  11477 
  • 53 Read de Alaniz J. Rovis T. J. Am. Chem. Soc.  2005,  127:  6284 
  • For examples of intramolecular proton transfer, see:
  • 54a Zimmerman HE. Acc. Chem. Res.  1987,  20:  263 
  • 54b Zimmerman HE. Wang P. Org. Lett.  2002,  4:  2593 ; and references cited therein
  • 54c Berrada S. Metzner P. Tetrahedron Lett.  1987,  28:  409 
  • It is also possible that the α-hydroxy-α-azolium anion adds to the Michael acceptor in concerted fashion, analogous to the reverse-Cope elimination mechanism seen with hydroxylamine additions; see:
  • 55a Niu D. Zhao K. J. Am. Chem. Soc.  1999,  121:  2456 
  • 55b Sibi MP. Liu M. Org. Lett.  2000,  2:  3393 
  • 55c Sibi MP. Prabagaran N. Ghorpade SG. Jasperse CP. J. Am. Chem. Soc.  2003,  125:  11796 
  • 56 Liu Q. Rovis T. J. Am. Chem. Soc.  2006,  128:  2552 
  • 57 Liu Q. Rovis T. Org. Process Res. Dev.  2007,  11:  598 
  • 58a Stetter H. Kuhlmann H. Synthesis  1975,  379 
  • 58b Reference .
  • 58c Baumann KL. Butler DE. Deering CF. Mennen KE. Millar A. Nanninga TN. Palmer CW. Roth BD. Tetrahedron Lett.  1992,  33:  2283 
  • 58d Galopin CC. Tetrahedron Lett.  2001,  42:  5589 
  • 58e Harrington PE. Tius MA. J. Am. Chem. Soc.  2001,  123:  8509 
  • 58f Anjaiah S. Chandrasekhar S. Gree R. Adv. Synth. Catal.  2004,  346:  1329 
  • 58g Nicolaou KC. Tang YF. Wang JH. Chem. Commun.  2007,  1922 
  • 59 Orellana A. Rovis T. Chem. Commun.  2008,  730 
  • 60 Liu Q. Perreault S. Rovis T. J. Am. Chem. Soc.  2008,  130:  14066 
43

Investigation of the enantioselectivity as a function of conversion revealed that 80 is formed in 80% ee at 10% conversion, with rapid erosion to 50% ee at 30% conversion.

44

Similar observations have been noted by Miller and co-workers; see reference 40.