Pharmacopsychiatry 2009; 42: S118-S128
DOI: 10.1055/s-0029-1216348
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Interactive Molecular Networks Obtained by Computer-aided Conversion of Microarray Data from Brains of Alcohol-drinking Rats

F. Matthäus 1 , V.A. Smith 2 , A. Fogtman 3 , 4 , W.H. Sommer 5 , F. Leonardi-Essmann 5 , A. Lourdusamy 6 , M.A. Reimers 7 , R. Spanagel 5 , P.J. Gebicke-Haerter 5
  • 1Center for Modeling and Simulation in the Biosciences, University of Heidelberg, Heidelberg, Germany
  • 2University of St. Andrews, School of Biology, St Andrews, Fife, UK
  • 3Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
  • 4Laboratory for Plant Molecular Biology, University of Warsaw, Warsaw, Poland
  • 5Central Institute of Mental Health, Department of Psychopharmacology, Mannheim, Germany
  • 6Dipartimento di Medicina Sperimentale e Sanità Pubblica, Università di Camerino, Camerino, Italy
  • 7Department of Statistics, Virginia Commonwealth University, Richmond, VA, USA
Further Information

Publication History

Publication Date:
11 May 2009 (online)

Abstract

Lists of differentially expressed genes in a disease have become increasingly more comprehensive with improvements on all technical levels. Despite statistical cutoffs of 99% or 95% confidence intervals, the number of genes can rise to several hundreds or even thousands, which is barely amenable to a researcher's understanding. This report describes some ways of processing those data by mathematical algorithms. Gene lists obtained from 53 microarrays (two brain regions (amygdala and caudate putamen), three rat strains drinking alcohol or being abstinent) have been used. They resulted from analyses on Affymetrix chips and encompassed approximately 6 000 genes that passed our quality filters. They have been subjected to four mathematical ways of processing: (a) basic statistics, (b) principal component analysis, (c) hierarchical clustering, and (d) introduction into Bayesian networks. It turns out, by using the p-values or the log-ratios, that they best subdivide into brain areas, followed by a fairly good discrimination into the rat strains and the least good discrimination into alcohol-drinking vs. abstinent. Nevertheless, despite the fact that the relation to alcohol-drinking was the weakest signal, attempts have been made to integrate the genes related to alcohol-drinking into Bayesian networks to learn more about their inter-relationships. The study shows, that the tools employed here are extremely useful for (a) quality control of datasets, (b) for constructing interactive (molecular) networks, but (c) have limitations in integration of larger numbers into the networks. The study also shows that it is often pivotal to balance out the number of experimental conditions with the number of animals.

References

  • 1 Béranger F, Crozet C, Goldsborough A. et al . Trehalose impairs aggregation of PrPSc molecules and protects prion-infected cells against oxidative damage.  Biochem Biophys Res Commun. 2008;  374 ((1)) 44-48
  • 2 Bhat SP. Crystallins, genes and cataract.  Prog Drug Res. 2003;  60 205-262
  • 3 Butte A, Kohane I. Mutual information revelance networks: functional genomic clustering using pairwise entropy measurements.  Pac Symp Biocomput. 2000;  5 418-429
  • 4 Charukamnoetkanok P, Fukushima A, Whitcup SM. et al . Expression of ocular autoantigens in the mouse thymus.  Curr Eye Res. 1998;  17 ((8)) 788-792
  • 5 Chen T, He HL, Church GM. Modeling gene expression with differential equations.  Pacific Symposium Biocomputing. 1999;  4 29-40
  • 6 Chu CT, Pizzo SV. Alpha 2-Macroglobulin, complement, and biologic defense: antigens, growth factors, microbial proteases, and receptor ligation.  Lab Invest. 1994;  71 ((6)) 792-812
  • 7 DeRisi J, Penland L, Brown PO. et al . Use of a cDNA microarray to analyse gene expression patterns in human cancer.  Nat Genet. 1996;  14 ((4)) 457-460
  • 8 DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale.  Science. 1997;  278 ((5338)) 680-686
  • 9 Eriksson K. The estimation of heritability for the self-selection of alcohol in the albino rat.  Ann Med Exp Biol Fenn. 1969;  47 172-174
  • 10 Friedman N, Geiger D, Goldschmidt M. Bayesian network classifiers.  Machine Learning. 1997;  29 131-163
  • 11 Friedman N, Murphy K, Russell S. Learning the structure of dynamic probabilistic networks. Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence. San Francisco, CA 1998 Morgan Kaufmann 139-147
  • 12 Friedman N, Goldszmidt M, Wyner A. Data analysis with Bayesian networks: a bootstrap approach.  Proc Fifteenth Conf on Uncertainty in Artificial Intelligence (UAI). 1999;  206-215
  • 13 Friedman N, Linial M, Nachman I. et al . Using Bayesian networks to analyze expression data.  J Comp Bio. 2000;  7 601-620
  • 14 Friedman N. Inferring cellular networks using probabilistic graphical models.  Science. 2004;  303 799-805
  • 15 Gebicke-Haerter PJ, Tretter F. The Systems view in addiction research.  Addiction Biol. 2008;  13 449-454
  • 16 Gentleman RC, Carey VJ, Bates DM. et al . Bioconductor: open software development for computational biology and bioinformatics.  Genome Biol. 2004;  5 ((10)) R80
  • 17 Hammock EA. Gene regulation as a modulator of social preference in voles.  Adv Genet. 2007;  59 107-127
  • 18 Hartemink AJ, Gifford D, Jaakkola T. et al . Combining location and expression data for principled discovery of genetic regulatory network models.  Pac Symp Biocomput. 2002;  7 437-449
  • 19 Heckerman D, Geiger D, Chickering DM. Learning Bayesian networks: The combination of knowledge and statistical data.  Mach Learn. 1995;  20 197-243
  • 20 Heckerman D, Mamdani A, Wellman M. Real-world applications of bayesian networks.  Communications of the ACM. 1995b;  38 ((3)) 24-30
  • 21 Hipólito L, Sánchez MJ, Polache A. et al . Brain metabolism of ethanol and alcoholism: an update.  Curr Drug Metab. 2007;  8 ((7)) 716-727
  • 22 Huntley GW, Gil O, Bozdagi O. The cadherin family of cell adhesion molecules: multiple roles in synaptic plasticity.  Neuroscientist. 2002;  8 ((3)) 221-233
  • 23 Husmeier D, Werhli AV. Bayesian integration of biological prior knowledge into the reconstruction of gene regulatory networks with Bayesian networks.  Comput Syst Bioinformatics Conf. 2007;  6 85-95
  • 24 Hussain MM, Strickland DK, Bakillah A. mammalian low-density lipoprotein receptor family.  Annu Rev Nutr. 1999;  19 141-172
  • 25 Jain NK, Roy I. Effect of trehalose on protein structure.  Protein Sci. 2009;  18 ((1)) 24-36
  • 26 Jolliffe IT. Principal Component Analysis, Springer Series in Statistics. 2nd ed. Springer, NY 2002
  • 27 Kaderali L, Radde N. Inferring Gene Regulatory Networks from Gene Expression Data. In: Kelemen A, Abraham A, Chen Y, Eds. “Computational Intelligence in Bioinformatics. Studies in Computational Intelligence”. Springer-Verlag 2008
  • 28 Kauffman S. Metabolic stability and epigenesis in randomly constructed genetic nets.  J Theor Biol. 1969;  22 437-467
  • 29 Kfoury N, Kapatos G. Identification of neuronal target genes for CCAAT/Enhancer binding proteins.  Mol Cell Neurosci. 2008;  , [Epub ahead of print]
  • 30 Klok EJ, Genesen ST van, Civil A. et al . Regulation of expression within a gene family. The case of the rat gammaB- and gammaD-crystallin promoters.  J Biol Chem. 1998;  273 ((27)) 17206-17215
  • 31 Kovacs DM. alpha2-macroglobulin in late-onset Alzheimer's disease.  Exp Gerontol. 2000;  35 ((4)) 473-479
  • 32 Kovács KA, Steinmann M, Magistretti PJ. et al . C/EBPbeta couples dopamine signalling to substance P precursor gene expression in striatal neurones.  J Neurochem. 2006;  98 ((5)) 1390-1399
  • 33 Kuehn BM. Scientists probe immune system's role in brain function and neurological disease.  JAMA. 2008;  299 ((6)) 619-620
  • 34 Langley P, Iba W, Thompson K. An analysis of Bayesian classiers. In Proceedings, Tenth National Conference on Articial Intelligence. 1992 Menlo Park, CA: AAAI Press 223-228
  • 35 Li T-K, Lumeng L, Doolittle DP. Selective breeding for alcohol preference and associated responses.  Behav Genet. 1993;  23 163-170
  • 36 Li P, Zhang C, Perkins EJ. et al . Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks.  BMC Bioinformatics. 2007;  8 (Suppl 7) S13
  • 37 Lipshutz RJ, Morris D, Chee M. et al . Using oligonucleotide probe arrays to access genetic diversity.  Biotechniques. 1995;  19 ((3)) 442-447
  • 38 Moseley A, Graw J, Delamere NA. Altered Na,K-ATPase pattern in gamma-crystallin mutant mice.  Invest Ophthalmol Vis Sci. 2002;  43 ((5)) 1517-1519
  • 39 Ott S, Imoto S, Miyano S. Finding optimal models for small gene networks.  Pac Symp Biocomput. 2004;  9 557-567
  • 40 Polanski A, Polanska J, Jarzab M. et al . Application of Bayesian networks for inferring cause-effect relations from gene expression profiles of cancer versus normal cells.  Math Biosci. 2007;  209 ((2)) 528-546 , Epub 2007 Mar 27
  • 41 Reimers M, Heilig M, Sommer WH. Gene discovery in neuropharmacological and behavioral studies using Affymetrix microarray data.  Methods. 2005;  37 ((3)) 219-228
  • 42 Rosati M, Valentin A, Patenaude DJ. et al . CCAAT-Enhancer-Binding Protein-beta (C/EBP-beta) activates CCR5 Promoter: Increased C/EBP-beta and CCR5 in T Lymphocytes from HIV-1-Infected Individuals.  J Immunol. 2001;  167 1654-1662
  • 43 Sarkar S, Davies JE, Huang Z. et al . Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein.  J Biol Chem.. 2007;  282 ((8)) 5641-5652
  • 44 Schelshorn DW, Schneider A, Kuschinsky W. et al . Expression of hemoglobin in rodent neurons.  J Cereb Blood Flow Metab. 2008; 
  • 45 Schena M, Shalon D, Davis RW. et al . Quantitative monitoring of gene expression patterns with a complementary DNA microarray.  Science. 1995;  270 467-470
  • 46 Simon I, Siegfried Z, Ernst J. et al . Combined static and dynamic analysis for determining the quality of time-series expression profiles.  Nature Biotechnology. 2005;  23 ((12)) 1503-1508
  • 47 Sommer WH, Arlinde C, Heilig M. The search for candidate genes of alcoholism: Evidence from expression profiling studies.  Addiction Biology. 2005;  10 ((1)) 71-80
  • 48 Treutlein J, Cichon S, Ridinger M. et al . Genome-wide association study of alcohol dependence.  Arch Gen Psych [in press]. 2009; 
  • 49 Vengeliene V, Siegmund S, Singer MV. et al . A comparative study on alcohol-preferring rat lines: effects of deprivation and stress phases on voluntary alcohol intake.  Alcohol Clin Exp Res. 2003;  27 ((7)) 1048-1054
  • 50 Vengeliene V, Leonardi-Essmann F, Perreau-Lenz S. et al . The dopamine D3 receptor plays an essential role in alcohol-seeking and relapse.  FASEB J. 2006;  20 ((13)) 2223-2233
  • 51 Wada K, Sakaguchi H, Jarvis ED. et al . Differential expression of glutamate receptors in avian neural pathways for learned vocalization.  J Comp Neurol. 2004;  476 44-64
  • 52 Wu KK. Aspirin and other cyclooxygenase inhibitors: new therapeutic insights.  Semin Vasc Med. 2003;  3 ((2)) 107-112
  • 53 Yamagata M, Sanes JR, Weiner JA. adhesion molecules.  Curr Opin Cell Biol. 2003;  15 ((5)) 621-632
  • 54 Yu J, Smith VA, Wang PP. et al . Advances to Bayesian network inference for generating causal networks from observational biological data.  Bioinformatics. 2004;  20 3594-3603
  • 55 Yu J. Developing Bayesian network inference algorithms to predict causal functional pathways in biological systems. [PhD Thesis]05 Duke University, Durham, NC

Correspondence

Prof. Dr. P. J. Gebicke-Haerter

Department of Psychopharmacology

Central Institute for Mental Health

J568159 Mannheim

Phone: +49/621/170 362 56

Fax: +49/621/170 362 55

Email: peter.gebicke@zi-mannheim.de