Subscribe to RSS
DOI: 10.1055/s-0028-1088146
Synthesis of 2-epi-Pumiliotoxin C via a Challenging Intramolecular Hydroamination Key Step
Publication History
Publication Date:
20 March 2009 (online)
Abstract
The synthesis of 2-epi-pumiliotoxin C was achieved in ten steps from cyclohexadiene oxide, using a challenging Cope-type hydroamination key step. This cyclization was performed on a mixture of two epimeric hydroxylamines, and a boat transition state is proposed to explain the kinetic preference observed for the cyclization of the epimer leading to N-hydroxy-epipumiliotoxin C.
Key words
total synthesis - alkaloids - amination - cyclization - heterocycles
- 1
Müller TE.Beller M. Chem. Rev. 1998, 98: 675 -
2a
Hultzsch KC. Org. Biomol. Chem. 2005, 3: 1819 -
2b
Hultzsch KC. Adv. Synth. Catal. 2005, 347: 367 -
2c
Roesky PW.Müller TE. Angew. Chem. Int. Ed. 2003, 42: 2708 - For selected examples highlighting the potential of hydroamination in heterocyclic synthesis, see:
-
3a
Trost BM.Tang W. J. Am. Chem. Soc. 2003, 125: 8744 -
3b
Hong S.Kawaoka AM.Marks TJ. J. Am. Chem. Soc. 2003, 125: 15878 -
3c
Trost BM.Tang W. J. Am. Chem. Soc. 2002, 124: 14542 -
3d
Molander GA.Dowdy ED.Pack SK. J. Org. Chem. 2001, 66: 4344 - For selected recent examples of 2-methylpiperidine formation via intramolecular hydroamination of a terminal alkene, see:
-
4a
Liu Z.Hartwig JF. J. Am. Chem. Soc. 2008, 130: 1570 -
4b
Müller C.Saak W.Doye S. Eur. J. Org. Chem. 2008, 2731 -
4c
Bauer EB.Andavan GTS.Hollis TK.Rubio RJ.Cho J.Kuchenbeiser GR.Helgert TR.Letko CS.Tham FS. Org. Lett. 2008, 10: 1175 -
4d
Quinet C.Jourdain P.Hermans C.Ates A.Lucas I.Markó IE. Tetrahedron 2008, 64: 1077 -
4e
Stubbert BD.Marks TJ. J. Am. Chem. Soc. 2007, 129: 4253 -
4f
Yu X.Marks TJ. Organometallics 2007, 26: 365 -
4g
Komeyama K.Morimoto T.Takaki K. Angew. Chem. Int. Ed. 2006, 45: 2938 -
4h
Han X.Widenhoefer RA. Angew. Chem. Int. Ed. 2006, 45: 1747 -
4i
Müller C.Loos C.Schulenberg N.Doye S. Eur. J. Org. Chem. 2006, 2499 -
4j
Michael FE.Cochran BM. J. Am. Chem. Soc. 2006, 128: 4246 -
4k
Gribkov DV.Hultzsch KC.Hampel F. J. Am. Chem. Soc. 2006, 128: 3748 -
4l
Riegert D.Collin J.Meddour A.Schulz E.Trifonov A. J. Org. Chem. 2006, 71: 2514 -
4m
Bender CF.Widenhoefer RA. Org. Lett. 2006, 8: 5303 -
4n
Thomson RK.Bexrud JA.Schafer LL. Organometallics 2006, 25: 4069 -
4o
Crimmin MR.Casely IJ.Hill MS. J. Am. Chem. Soc. 2005, 127: 2042 -
4p
Bender CF.Widenhoefer RA. J. Am. Chem. Soc. 2005, 127: 1070 -
4q
Bextrud JA.Beard JD.Leitch DC.Schafer LL. Org. Lett. 2005, 7: 1959 -
4r
Kim JY.Livinghouse T. Org. Lett. 2005, 7: 1737 -
4s
Hong S.Marks TJ. Acc. Chem. Res. 2004, 37: 673 -
4t
Gribkov DV.Hultzsch KC. Angew. Chem. Int. Ed. 2004, 43: 5542 -
4u
Ryu J.-S.Marks TJ.McDonald FE. J. Org. Chem. 2004, 69: 1038 -
4v
Lauterwasser F.Hayes PG.Bräse S.Piers WE.Schafer LL. Organometallics 2004, 23: 2234 -
4w
Ryu J.-S.Li GY.Marks TJ. J. Am. Chem. Soc. 2003, 125: 12584 -
4x
Molander GA.Pack SK. J. Org. Chem. 2003, 68: 9214 -
4y
Kim YK.Livinghouse T. Angew. Chem. Int. Ed. 2002, 41: 3645 -
4z
Schlummer B.Hartwig JF. Org. Lett. 2002, 4: 147 ; see ref. 3d - Pumiliotoxin C has been synthesized numerous times using a variety of creative routes. However, to the best of our knowledge hydroamination routes have not been reported. For recent syntheses, see:
-
6a
Amat M.Griera R.Fabregat R.Molins E.Bosch J. Angew. Chem. Int. Ed. 2008, 47: 3348 -
6b
Lauzon S.Tremblay F.Gagnon D.Godbout C.Chabot C.Mercier-Shanks C.Perrault S.DeSève H.Spino C. J. Org. Chem. 2008, 73: 6239 -
6c
Girard N.Hurvois J.-P.Moinet C.Toupet L. Eur. J. Org. Chem. 2005, 2269 -
6d
Dijk EW.Panella L.Pinho P.Naasz R.Meetsma A.Minnaard AJ.Feringa BL. Tetrahedron 2004, 60: 9687 -
6e
Oppolzer W.Flaskamp E.Bieber LW. Helv. Chim. Acta 2001, 84: 141 -
6f
Akashi M.Sato Y.Mori M. J. Org. Chem. 2001, 66: 7873 -
6g
Shieh Y.Yeh MP.Rao UN. J. Chin. Chem. Soc. 2000, 47: 283 -
6h
Padwa A.Heidelbaugh TM.Kuethe JT. J. Org. Chem. 2000, 65: 2368 -
6i
Riechers T.Krebs HC.Wartchow R.Habermehl G. Eur. J. Org. Chem. 1998, 2641 -
6j
Back TG.Nakajima K. J. Org. Chem. 1998, 63: 6566 -
6k
Weymann M.Schultz-Kukula M.Kunz H. Tetrahedron Lett. 1998, 39: 7835 ; for a detailed list of references, see ref. 6d -
6l For a review of the literature
until 1976, see:
Inubushi Y.Ibuka T. Heterocycles 1977, 8: 633 -
7a
Beauchemin A.Moran J.Lebrun M.Séguin C.Dimitrijevic E.Zhang L.Gorelsky SI. Angew. Chem. Int. Ed. 2008, 47: 1410 -
7b
Cebrowski PH.Roveda J.-G.Moran J.Gorelsky SI.Beauchemin AM. Chem. Commun. 2008, 492 -
7c
Moran J.Gorelsky SI.Dimitrijevic E.Lebrun M.-E.Bédard A.-C.Séguin C.Beauchemin AM. J. Am. Chem. Soc. 2008, 130: 17893 -
7d
Bourgeois J.Dion I.Cebrowski PH.Loiseau F.Bédard A.-C.Beauchemin AM. J. Am. Chem. Soc. 2009, 131: 874 - Such reactions are also referred to as ‘reverse Cope cyclizations’ or reverse Cope eliminations in the literature. For an excellent review, see:
-
8a
Cooper NJ.Knight DW. Tetrahedron 2004, 60: 243 - For examples of such cyclizations leading to the formation of 2-methylpiperidines, see:
-
8b
House HO.Lee LF. J. Org. Chem. 1976, 41: 863 -
8c
Ciganek E. J. Org. Chem. 1990, 55: 3007 -
8d
Ciganek E.Read JM. J. Org. Chem. 1995, 60: 5795 -
8e
Tronchet JMJ.Zsely M.Yazji RN.Barbalat-Rey F.Geoffroy M. Carbohydr. Lett. 1995, 1: 343 -
8f
Coogan MP.Knight DW. Tetrahedron Lett. 1996, 37: 6417 -
8g
Takano I.Yasuda I.Nishijima M.Hitotsuyanagi Y.Takeya K.Itokawa H. J. Org. Chem. 1997, 62: 8251 -
8h
O’Neil IA.Southern JM. Tetrahedron Lett. 1998, 39: 9089 -
8i
O’Neil IA.Cleator E.Southern JM.Hone N.Tapolczay DJ. Synlett 2000, 695 -
8j
O’Neil IA.Woolley JC.Southern JM.Hobbs H. Tetrahedron Lett. 2001, 42: 8243 - For examples leading to the formation of other heterocyclic six-membered ring systems, see:
-
8k
O’Neil IA.Cleator E.Ramos VE.Chorlton AP.Tapolczay DJ. Tetrahedron Lett. 2004, 45: 3655 -
8l
Henry N.O’Neil IA. Tetrahedron Lett. 2007, 48: 1691 -
8m
Ellis GL.O’Neil IA.Ramos VE.Cleator E.Kalindjian SB.Chorlton AP.Tapolczay DJ. Tetrahedron Lett. 2007, 48: 1683 - 11
Toyota M.Asoh T.Matsuura M.Fukumoto K. J. Org. Chem. 1996, 61: 8687 - 12
Marino JP.Jaén JC. J. Am. Chem. Soc. 1982, 104: 3165 -
13a
Côté A.Lindsay VNG.Charette AB. Org. Lett. 2007, 9: 85 -
13b
Gomez L.Denmark SE. Org. Lett. 2001, 3: 2907 - 14
Ghosh AK.Gong G. Org. Lett. 2007, 9: 1437 - For the use of similar conditions in a challenging five-membered system, see:
-
15a
Oppolzer W.Spivey AC.Bochet CG. J. Am. Chem. Soc. 1994, 116: 3139 -
15b Hydroxylamines can be
sensitive to oxygen and prone to decomposition via bimolecular pathways:
Horiyama S.Suwa K.Yamaki M.Kataoka H.Katagi T.Takayama M.Takeuchi T. Chem. Pharm. Bull. 2002, 50: 996 - 17
Walts AE.Roush WR. Tetrahedron 1985, 41: 3463 - 18 For 2-epi-pumilotoxin C, comparison
of the free base was in good agreement with literature data. See:
Meyers AI.Milot G. J. Am. Chem. Soc. 1993, 115: 6652 - For pumilotoxin C, data obtained for the free base (ref. 6d, 19a) and the HCl salt (ref. 19b) was in good agreement with literature data:
-
19a
Brandi A.Cordero FM.Goti A.Guarna A. Tetrahedron Lett. 1992, 33: 6697 -
19b
Schultz AG.McCloskey PJ.Court JJ. J. Am. Chem. Soc. 1987, 109: 6493
References and Notes
To the best of our knowledge, there are only few reported examples of a formation of six-membered piperidine ring via hydroamination onto an internal alkene: see ref. 4e,g,z for examples.
9O’Neil has reported cyclizations of unsaturated N-methyl-hydroxylamines leading to various six-membered ring systems: see ref. 8h-m. The cyclization to form morpholine N-oxides is compatible with distal alkene substitution: see ref. 8k,l.
10A first generation synthesis designed to provide access to various hydroamination precursors is shown in Scheme [8] .
16None of the hydroxylamine 1a could be recovered from the reaction mixture. ¹³C NMR analysis indicated that recovered hydroxylamine 1b was diastereomerically pure (within detection limits).
20This rationale is consistent with results from DFT calculations in simpler systems: Dr. Serge I. Gorelsky, private communication.
21Complete experimental procedures and characterization data for all new compounds can be obtained from the authors.