Subscribe to RSS
DOI: 10.1055/a-2410-2039
A Practical Guide to SuFEx Chemistry: An Overview of S(VI)-SuFEx Linkers and Their Reactivity
We thank the Universita degli Studi di Bari Aldo Moro and the Consorzio Interuniversitario Nazionale sulle Metodologie e Processi Innovativi di Sintesi (CINMPIS consortium). D.S. and R.L. acknowledge funding from the European Commission's Horizon Europe research and innovation programme through the Marie Skłodowska-Curie doctoral network "GreenDigiPharma" (grant agreement No 101073089). P.N. acknowledges funding from the European Commission's Horizon Europe research and innovation programme through a Marie Skłodowska-Curie Postdoctoral Fellowship "ExpandFlow" (grant agreement No. 101106497).
Abstract
Sulfur(VI)–fluoride exchange (SuFEx) is a second generation, metal-free click chemistry concept introduced by Sharpless in 2014. Since the introduction of the concept, a large variety of synthetic methodologies to S(VI)-SuFEx hubs, and their derivatization with oxygen-, nitrogen-, and carbon-based nucleophiles have been developed. Herein, we provide a concise and practical overview for their preparation, SuFExability, inclusive of which substituents are tolerated. The stereoselective synthesis of aza-derivatives is also discussed.
1 Introduction
2 Synthesis of SuFEx Hubs
2.1 Sulfonyl Fluorides
2.2 Fluorosulfates
2.3 Sulfamoyl Fluorides
2.4 Sulfonimidoyl Fluorides
2.5 Sulfuramidimidoyl Fluorides and Sulfurofluoridoimidates
2.6 Sulfondiimidoyl Fluorides
3 Reactivity of SuFEx Hubs
3.1 Reactivity of Sulfonyl Fluorides
3.2 Reactivity of Fluorosulfates
3.3 Reactivity of Sulfamoyl Fluorides
3.4 Reactivity of Sulfonimidoyl Fluorides
3.5 Reactivity of Sulfurofluoridoimidates
3.6 Reactivity of Sulfondiimidoyl Fluorides
4 Stereochemical Considerations in SuFEx Chemistry
5 Conclusion and Outlook
Publication History
Received: 01 August 2024
Accepted: 05 September 2024
Accepted Manuscript online:
05 September 2024
Article published online:
28 October 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
- 2 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
- 3 Xu L, Wu P, Dong JJ. New Polymers From SuFEx Click Chemistry: Syntheses and Perspectives. In RSC Polymer Chemistry Series No. 32 - Synthetic Polymer Chemistry: Innovations and Outlook. Zhao Z, Hu R, Qin A, Tang BZ. RSC; Cambridge: 2020: 1-31
- 4 Kitamura S, Zheng Q, Woehl JL, Solania A, Chen E, Dillon N, Hull MV, Kotaniguchi M, Cappiello JR, Kitamura S, Nizet V, Sharpless KB, Wolan DW. J. Am. Chem. Soc. 2020; 142: 10899
- 5 Brighty GJ, Botham RC, Li S, Nelson L, Mortenson DE, Li G, Morisseau C, Wang H, Hammock BD, Sharpless KB, Kelly JW. Nat. Chem. 2020; 12: 906
- 6 McCann HM, Lake BP. M, Hoffman KS, Davola ME, Mossman KL, Rullo AF. ACS Chem. Biol. 2022; 17: 1269
- 7 Zheng Q, Xu H, Wang H, Du W.-GH, Wang N, Xiong H, Gu Y, Noodleman L, Sharpless KB, Yang G, Wu P. J. Am. Chem. Soc. 2021; 143: 3753
- 8 Gilbert KE, Vuorinen A, Aatkar A, Pogány P, Pettinger J, Grant EK, Kirkpatrick JM, Rittinger K, House D, Burley GA, Bush JT. ACS Chem. Biol. 2023; 18: 285
- 9 Homer JA, Xu L, Kayambu N, Zheng Q, Choi EJ, Kim BM, Sharpless KB, Zuilhof H, Dong J, Moses JE. Nat. Rev. Methods Primers 2023; 3: 58
- 10 Zeng D, Deng W, Jiang X. Chem. Eur. J. 2023; 29: e202300536
- 11 Kiang T, Zare RN. J. Chem. Soc., Chem. Commun. 1980; 1228
- 12 Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
- 13 Gembus V, Marsais F, Levacher V. Synlett 2008; 1463
- 14 Gao B, Zhang L, Zheng Q, Zhou F, Klivansky LM, Lu J, Liu Y, Dong J, Wu P, Sharpless KB. Nat. Chem. 2017; 9: 1083
- 15 Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. Angew. Chem. Int. Ed. 2021; 60: 7397
- 16 Mukherjee P, Woroch CP, Cleary L, Rusznak M, Franzese RW, Reese MR, Tucker JW, Humphrey JM, Etuk SM, Kwan SC, am Ende CW, Ball ND. Org. Lett. 2018; 20: 3943
- 17 Mahapatra S, Woroch CP, Butler TW, Carneiro SN, Kwan SC, Khasnavis SR, Gu J, Dutra JK, Vetelino BC, Bellenger J, am Ende CW, Ball ND. Org. Lett. 2020; 22: 4389
- 18 Zeng D, Deng W.-P, Jiang X. Natl. Sci. Rev. 2023; 10: nwad123
- 19 Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. Chem. Soc. Rev. 2019; 48: 4731
- 20 Lou TS.-B, Willis MC. Nat. Rev. Chem. 2022; 6: 146
- 21 Finn MG, Kolb HC, Sharpless KB. Nat. Synth. 2022; 1: 8
- 22 Zhong T, Chen Z, Yi J, Lu G, Weng J. Chin. Chem. Lett. 2021; 32: 2736
- 23 Zheng Y, Lu W, Ma T, Huang S. Org. Chem. Front. 2024; 11: 217
- 24 Chelagha A, Louvel D, Taponard A, Berthelon R, Tlili A. Catalysts 2021; 11: 830
- 25 Lee C, Ball ND, Sammis GM. Chem. Commun. 2019; 55: 14753
- 26 Kwon J, Kim BM. Org. Lett. 2019; 21: 428
- 27 Magre M, Cornella J. J. Am. Chem. Soc. 2021; 143: 21497
- 28 Wang L, Cornella J. Angew. Chem. Int. Ed. 2020; 59: 23510
- 29 Lo PK. T, Chen Y, Willis MC. ACS Catal. 2019; 9: 10668
- 30 Davies AT, Curto JM, Bagley SW, Willis MC. Chem. Sci. 2017; 8: 1233
- 31 Tribby AL, Rodríguez I, Shariffudin S, Ball ND. J. Org. Chem. 2017; 82: 2294
- 32 Pan Q, Liu Y, Pang W, Wu J, Ma X, Hu X, Guo Y, Chen Q.-Y, Liu C. Org. Biomol. Chem. 2021; 19: 8999
- 33 Liu Y, Yu D, Guo Y, Xiao J.-C, Chen Q.-Y, Liu C. Org. Lett. 2020; 22: 2281
- 34 Zhong T, Pang M.-K, Chen Z.-D, Zhang B, Weng J, Lu G. Org. Lett. 2020; 22: 3072
- 35 Pérez-Palau M, Cornella J. Eur. J. Org. Chem. 2020; 2020: 2497
- 36 Wang P, Zhang H, Nie X, Xu T, Liao S. Nat. Commun. 2022; 13: 3370
- 37 Tilby MJ, Dewez DF, Pantaine LR. E, Hall A, Martínez-Lamenca C, Willis MC. ACS Catal. 2022; 12: 6060
- 38 Sarver PJ, Bissonnette NB, MacMillan DW. C. J. Am. Chem. Soc. 2021; 143: 9737
- 39 Chen Z.-D, Zhou X, Yi J.-T, Diao H.-J, Chen Q.-L, Lu G, Weng J. Org. Lett. 2022; 24: 2474
- 40 Zhang W, Li H, Li X, Zou Z, Huang M, Liu J, Wang X, Ni S, Pan Y, Wang Y. Nat. Commun. 2022; 13: 3515
- 41 Nguyen VT, Haug GC, Nguyen VD, Vuong NT. H, Karki GB, Arman HD, Larionov OV. Chem. Sci. 2022; 13: 4170
- 42 Ma Z, Liu Y, Ma X, Hu X, Guo Y, Chen Q.-Y, Liu C. Org. Chem. Front. 2022; 9: 1115
- 43 Andrews JA, Pantaine LR. E, Palmer CF, Poole DL, Willis MC. Org. Lett. 2021; 23: 8488
- 44 Kordnezhadian R, Zogu A, Borgarelli C, Van Lommel R, Demaerel J, De Borggraeve WM, Ismalaj E. Chem. Eur. J. 2023; 29: e202300361
- 45 Wright SW, Hallstrom KN. J. Org. Chem. 2006; 71: 1080
- 46 Kirihara M, Naito S, Ishizuka Y, Hanai H, Noguchi T. Tetrahedron Lett. 2011; 52: 3086
- 47 Laudadio G, Bartolomeu A. deA, Verwijlen LM. H. M, Cao Y, de Oliveira KT, Noël T. J. Am. Chem. Soc. 2019; 141: 11832
- 48 Park JK, Oh J, Lee S. Org. Chem. Front. 2022; 9: 3407
- 49 Lange W, Müller E. Ber. Deutsch. Chem. Ges. B 1930; 63: 2653
- 50 Smedley CJ, Homer JA, Gialelis TL, Barrow AS, Koelln RA, Moses JE. Angew. Chem. Int. Ed. 2022; 61: e202112375
- 51 Bernús M., Mazzarella D., Stanić J., Zhai Z., Yeste-Vázquez A., Boutureira O., Gargano A. F. G., Grossmann T. N., Noël T.; Nat. Synth. 2024, 3, 185.
- 52 Veryser C, Demaerel J, Bieliūnas V, Gilles P, De Borggraeve WM. Org. Lett. 2017; 19: 5244
- 53 Guo T, Meng G, Zhan X, Yang Q, Ma T, Xu L, Sharpless KB, Dong J. Angew. Chem. Int. Ed. 2018; 57: 2605
- 54 Zhou H, Mukherjee P, Liu R, Evrard E, Wang D, Humphrey JM, Butler TW, Hoth LR, Sperry JB, Sakata SK, Helal CJ, am Ende CW. Org. Lett. 2018; 20: 812
- 55 Ochiai M, Okada T, Tada N, Yoshimura A, Miyamoto K, Shiro M. J. Am. Chem. Soc. 2009; 131: 8392
- 56 Sun S, Gao B, Chen J, Sharpless KB, Dong J. Angew. Chem. Int. Ed. 2021; 60: 21195
- 57 Carneiro SN, Khasnavis SR, Lee J, Butler TW, Majmudar JD, am Ende CW, Ball ND. Org. Biomol. Chem. 2023; 21: 1356
- 58 Gao B, Li S, Wu P, Moses JE, Sharpless KB. Angew. Chem. Int. Ed. 2018; 57: 1939
- 59 Johnson CR, Bis KG, Cantillo JH, Meanwell NA, Reinhard MF. D, Zeller JR, Vonk GP. J. Org. Chem. 1983; 48: 1
- 60 Greed S, Briggs EL, Idiris FI. M, White AJ. P, Lücking U, Bull JA. Chem. Eur. J. 2020; 26: 12533
- 61 Teng S, Shultz ZP, Shan C, Wojtas L, Lopchuk JM. Nat. Chem. 2024; 16: 183
- 62 Li S, Wu P, Moses JE, Sharpless KB. Angew. Chem. Int. Ed. 2017; 56: 2903
- 63 Zhang Z.-X, Willis MC. Chem 2022; 8: 1137
- 64 Ding M, Bell C, Willis MC. Angew. Chem. Int. Ed. 2024; 63: e202409240
- 65 Han B, Khasnavis SR, Nwerem M, Bertagna M, Ball ND, Ogba OM. Inorg. Chem. 2022; 61: 9746
- 66 Barrow A, Moses J. Synlett 2016; 27: 1840
- 67 Smedley CJ, Zheng Q, Gao B, Li S, Molino A, Duivenvoorden HM, Parker BS, Wilson DJ. D, Sharpless KB, Moses JE. Angew. Chem. Int. Ed. 2019; 58: 4552
- 68 Zhen J, Li Y, Yuan H, Xu X, Du X, Li X.-Q, Luo Y. Org. Chem. Front. 2023; 10: 404
- 69 Wu X, Zhang W, Sun G, Zou X, Sang X, He Y, Gao B. Nat. Commun. 2023; 14: 5168
- 70 Liang D, Streefkerk DE, Jordaan D, Wagemakers J, Baggerman J, Zuilhof H. Angew. Chem. Int. Ed. 2020; 59: 7494
- 71 Greed S, Symes O, Bull JA. Chem. Commun. 2022; 58: 5387
- 72 Zhao S, Zeng D, Wang M, Jiang X. Nat. Commun. 2024; 15: 727