Subscribe to RSS
DOI: 10.1055/a-2083-8717
Modern preoperative imaging and functional mapping in patients with intracranial glioma
Moderne präoperative Bildgebung und funktionelle Kartierung bei Patienten mit intrakraniellen GliomenAbstract
Magnetic resonance imaging (MRI) in therapy-naïve intracranial glioma is paramount for neuro-oncological diagnostics, and it provides images that are helpful for surgery planning and intraoperative guidance during tumor resection, including assessment of the involvement of functionally eloquent brain structures. This study reviews emerging MRI techniques to depict structural information, diffusion characteristics, perfusion alterations, and metabolism changes for advanced neuro-oncological imaging. In addition, it reflects current methods to map brain function close to a tumor, including functional MRI and navigated transcranial magnetic stimulation with derived function-based tractography of subcortical white matter pathways. We conclude that modern preoperative MRI in neuro-oncology offers a multitude of possibilities tailored to clinical needs, and advancements in scanner technology (e. g., parallel imaging for acceleration of acquisitions) make multi-sequence protocols increasingly feasible. Specifically, advanced MRI using a multi-sequence protocol enables noninvasive, image-based tumor grading and phenotyping in patients with glioma. Furthermore, the add-on use of preoperatively acquired MRI data in combination with functional mapping and tractography facilitates risk stratification and helps to avoid perioperative functional decline by providing individual information about the spatial location of functionally eloquent tissue in relation to the tumor mass.
Key Points:
-
Advanced preoperative MRI allows for image-based tumor grading and phenotyping in glioma.
-
Multi-sequence MRI protocols nowadays make it possible to assess various tumor characteristics (incl. perfusion, diffusion, and metabolism).
-
Presurgical MRI in glioma is increasingly combined with functional mapping to identify and enclose individual functional areas.
-
Advancements in scanner technology (e. g., parallel imaging) facilitate increasing application of dedicated multi-sequence imaging protocols.
Citation Format
-
Sollmann N, Zhang H, Kloth C et al. Modern preoperative imaging and functional mapping in patients with intracranial glioma. Fortschr Röntgenstr 2023; 195: 989 – 1000
Zusammenfassung
Der Magnetresonanztomografie (MRT) bei unbehandelten intrakraniellen Gliomen kommt entscheidende Bedeutung im Rahmen der neuroonkologischen Diagnostik zu, während die MRT-Bildgebung zum Zeitpunkt vor einer neurochirurgischen Tumorresektion zudem Bilddaten liefert, welche die chirurgische Planung und das intraoperative Vorgehen unterstützen können und insbesondere Rückschlüsse auf eine mögliche Beteiligung funktionell eloquenter Strukturen zulassen. Die vorliegende Arbeit stellt aktuell aufkommende MRT-basierte Techniken vor, welche eine Darstellung von strukturellen und diffusionsbasierten Charakteristika sowie Perfusionsveränderungen und Alterationen des Metabolismus im neuroonkologischen Zusammenhang ermöglichen. Darüber hinaus stellt sie fortschrittliche Methoden zur Kartierung von Gehirnfunktionen in Nachbarschaft eines Tumors vor unter Einbezug der funktionellen MRT sowie der navigierten transkraniellen Magnetstimulation und funktionsbasierten Traktografie von subkortikalen Faserbahnen der weißen Substanz. Zusammenfassend eröffnet die moderne präoperative MRT-Bildgebung in der Neuroonkologie eine wachsende Bandbreite an Möglichkeiten gemäß der individuellen klinischen Anforderungen, wobei Weiterentwicklungen im Bereich der Scanner-Technologie (z. B. parallele Bildgebung zur Beschleunigung der Bildakquisition) auch Protokolle mit einer zunehmenden Anzahl von Sequenzen möglich machen. Im Speziellen erlaubt eine fortschrittliche MRT-Bildgebung mittels multisequenzieller Protokolle eine nichtinvasive, bildbasierte Tumorklassifikation und Phänotypisierung bei Patienten mit Gliomen. Des Weiteren ermöglicht die zusätzliche Verwendung präoperativer MRT-Bildgebung in Kombination mit funktioneller Kartierung und Traktografie eine Risikostratifizierung und hilft bei der Vermeidung perioperativer funktioneller Defizite, da individuelle Informationen über die räumliche Lokalisation funktionell eloquenter Strukturen in Relation zum Tumor bereitgestellt werden können.
Kernaussagen:
-
Moderne präoperative MRT-Bildgebung ermöglicht eine bildgestützte Tumorklassifikation und Phänotypisierung bei Gliomen.
-
Bildgebungsprotokolle mit vielfältigen Sequenzen können heutzutage eine Darstellung verschiedenster Tumorcharakteristika gewährleisten (inkl. Perfusion, Diffusion sowie Metabolismus).
-
Präoperative MRT-Bildgebung bei Gliomen wird zunehmend mit funktioneller Kartierung zur Identifikation und Abgrenzung individueller funktioneller Areale kombiniert.
-
Weiterentwicklungen der Scanner-Technologie (z. B. parallele Bildgebung) können zu einer weiter verbreiteten Anwendung spezifischer multisequenzieller Bildgebungsprotokolle beitragen.
Key words
glioma - preoperative mapping - functional mapping - magnetic resonance imaging - navigated transcranial magnetic stimulation - tractographyPublication History
Received: 23 July 2021
Accepted: 18 April 2023
Article published online:
24 May 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Ostrom QT, Cioffi G, Gittleman H. et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro-oncology 2019; 21: v1-v100 DOI: 10.1093/neuonc/noz150.
- 2 Ostrom QT, Gittleman H, Xu J. et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009-2013. Neuro-oncology 2016; 18: v1-v75 DOI: 10.1093/neuonc/now207.
- 3 Louis DN, Perry A, Wesseling P. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-oncology 2021; DOI: 10.1093/neuonc/noab106.
- 4 Sanai N, Berger MS. Surgical oncology for gliomas: the state of the art. Nat Rev Clin Oncol 2018; 15: 112-125 DOI: 10.1038/nrclinonc.2017.171.
- 5 Martinez-Garcia M, Alvarez-Linera J, Carrato C. et al. SEOM clinical guidelines for diagnosis and treatment of glioblastoma (2017). Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 2018; 20: 22-28 DOI: 10.1007/s12094-017-1763-6.
- 6 Weller M, van den Bent M, Hopkins K. et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 2014; 15: e395-e403 DOI: 10.1016/S1470-2045(14)70011-7.
- 7 Smits M. MRI biomarkers in neuro-oncology. Nature reviews Neurology 2021; DOI: 10.1038/s41582-021-00510-y.
- 8 Smits M, van den Bent MJ. Imaging Correlates of Adult Glioma Genotypes. Radiology 2017; 284: 316-331 DOI: 10.1148/radiol.2017151930.
- 9 Verburg N, de Witt Hamer PC. State-of-the-art imaging for glioma surgery. Neurosurgical review 2021; 44: 1331-1343 DOI: 10.1007/s10143-020-01337-9.
- 10 Henderson F, Abdullah KG, Verma R. et al. Tractography and the connectome in neurosurgical treatment of gliomas: the premise, the progress, and the potential. Neurosurgical focus 2020; 48: E6 DOI: 10.3171/2019.11.FOCUS19785.
- 11 Haddad AF, Young JS, Berger MS. et al. Preoperative Applications of Navigated Transcranial Magnetic Stimulation. Front Neurol 2020; 11: 628903 DOI: 10.3389/fneur.2020.628903.
- 12 Sollmann N, Krieg SM, Saisanen L. et al. Mapping of Motor Function with Neuronavigated Transcranial Magnetic Stimulation: A Review on Clinical Application in Brain Tumors and Methods for Ensuring Feasible Accuracy. Brain Sci 2021; 11 DOI: 10.3390/brainsci11070897.
- 13 Jarret J, Bore A, Bedetti C. et al. A methodological scoping review of the integration of fMRI to guide dMRI tractography. What has been done and what can be improved: A 20-year perspective. Journal of neuroscience methods 2021; 367: 109435 DOI: 10.1016/j.jneumeth.2021.109435.
- 14 Villanueva-Meyer JE, Mabray MC, Cha S. Current Clinical Brain Tumor Imaging. Neurosurgery 2017; 81: 397-415 DOI: 10.1093/neuros/nyx103.
- 15 Ellingson BM, Bendszus M, Boxerman J. et al. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro-oncology 2015; 17: 1188-1198 DOI: 10.1093/neuonc/nov095.
- 16 Zhang B, MacFadden D, Damyanovich AZ. et al. Development of a geometrically accurate imaging protocol at 3 Tesla MRI for stereotactic radiosurgery treatment planning. Phys Med Biol 2010; 55: 6601-6615 DOI: 10.1088/0031-9155/55/22/002.
- 17 Willems PW, van der Sprenkel JW, Tulleken CA. et al. Neuronavigation and surgery of intracerebral tumours. Journal of neurology 2006; 253: 1123-1136 DOI: 10.1007/s00415-006-0158-3.
- 18 Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR in biomedicine 2002; 15: 456-467 DOI: 10.1002/nbm.783.
- 19 Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 2008; 34: 51-61 DOI: 10.1007/s12031-007-0029-0.
- 20 Jolapara M, Patro SN, Kesavadas C. et al. Can diffusion tensor metrics help in preoperative grading of diffusely infiltrating astrocytomas? A retrospective study of 36 cases. Neuroradiology 2011; 53: 63-68 DOI: 10.1007/s00234-010-0761-y.
- 21 Liu X, Tian W, Kolar B. et al. MR diffusion tensor and perfusion-weighted imaging in preoperative grading of supratentorial nonenhancing gliomas. Neuro-oncology 2011; 13: 447-455 DOI: 10.1093/neuonc/noq197.
- 22 White ML, Zhang Y, Yu F. et al. Diffusion tensor MR imaging of cerebral gliomas: evaluating fractional anisotropy characteristics. AJNR American journal of neuroradiology 2011; 32: 374-381 DOI: 10.3174/ajnr.A2267.
- 23 Houillier C, Wang X, Kaloshi G. et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 2010; 75: 1560-1566 DOI: 10.1212/WNL.0b013e3181f96282.
- 24 Xiong J, Tan W, Wen J. et al. Combination of diffusion tensor imaging and conventional MRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in oligodendroglial tumours. European radiology 2016; 26: 1705-1715 DOI: 10.1007/s00330-015-4025-4.
- 25 Xiong J, Tan WL, Pan JW. et al. Detecting isocitrate dehydrogenase gene mutations in oligodendroglial tumors using diffusion tensor imaging metrics and their correlations with proliferation and microvascular density. Journal of magnetic resonance imaging: JMRI 2016; 43: 45-54 DOI: 10.1002/jmri.24958.
- 26 Eidel O, Neumann JO, Burth S. et al. Automatic Analysis of Cellularity in Glioblastoma and Correlation with ADC Using Trajectory Analysis and Automatic Nuclei Counting. PLoS One 2016; 11: e0160250 DOI: 10.1371/journal.pone.0160250.
- 27 Bette S, Huber T, Gempt J. et al. Local Fractional Anisotropy Is Reduced in Areas with Tumor Recurrence in Glioblastoma. Radiology 2017; 283: 499-507 DOI: 10.1148/radiol.2016152832.
- 28 Pasternak O, Sochen N, Gur Y. et al. Free water elimination and mapping from diffusion MRI. Magn Reson Med 2009; 62: 717-730 DOI: 10.1002/mrm.22055.
- 29 Metz MC, Molina-Romero M, Lipkova J. et al. Predicting Glioblastoma Recurrence from Preoperative MR Scans Using Fractional-Anisotropy Maps with Free-Water Suppression. Cancers (Basel) 2020; 12 DOI: 10.3390/cancers12030728.
- 30 Henderson Jr F, Parker D, Vijayakumari AA. et al. Enhanced Fiber Tractography Using Edema Correction: Application and Evaluation in High-Grade Gliomas. Neurosurgery 2021; 89: 246-256 DOI: 10.1093/neuros/nyab129.
- 31 Jellison BJ, Field AS, Medow J. et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR American journal of neuroradiology 2004; 25: 356-369
- 32 Farquharson S, Tournier JD, Calamante F. et al. White matter fiber tractography: why we need to move beyond DTI. Journal of neurosurgery 2013; 118: 1367-1377 DOI: 10.3171/2013.2.JNS121294.
- 33 Duffau H. Diffusion tensor imaging is a research and educational tool, but not yet a clinical tool. World neurosurgery 2014; 82: e43-e45 DOI: 10.1016/j.wneu.2013.08.054.
- 34 Jeurissen B, Leemans A, Tournier JD. et al. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Human brain mapping 2013; 34: 2747-2766 DOI: 10.1002/hbm.22099.
- 35 Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. NMR in biomedicine 2010; 23: 836-848 DOI: 10.1002/nbm.1506.
- 36 Van Cauter S, Veraart J, Sijbers J. et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology 2012; 263: 492-501 DOI: 10.1148/radiol.12110927.
- 37 Zhang H, Schneider T, Wheeler-Kingshott CA. et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 2012; 61: 1000-1016 DOI: 10.1016/j.neuroimage.2012.03.072.
- 38 Masjoodi S, Hashemi H, Oghabian MA. et al. Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging. J Biomed Phys Eng 2018; 8: 251-260
- 39 Kadota Y, Hirai T, Azuma M. et al. Differentiation between glioblastoma and solitary brain metastasis using neurite orientation dispersion and density imaging. J Neuroradiol 2020; 47: 197-202 DOI: 10.1016/j.neurad.2018.10.005.
- 40 Tuch DS. Q-ball imaging. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 2004; 52: 1358-1372 DOI: 10.1002/mrm.20279.
- 41 Alexander DC. Multiple-fiber reconstruction algorithms for diffusion MRI. Annals of the New York Academy of Sciences 2005; 1064: 113-133 DOI: 10.1196/annals.1340.018.
- 42 Kuhnt D, Bauer MH, Egger J. et al. Fiber tractography based on diffusion tensor imaging compared with high-angular-resolution diffusion imaging with compressed sensing: initial experience. Neurosurgery 2013; 72 (Suppl. 01) 165-175 DOI: 10.1227/NEU.0b013e318270d9fb.
- 43 Caverzasi E, Hervey-Jumper SL, Jordan KM. et al. Identifying preoperative language tracts and predicting postoperative functional recovery using HARDI q-ball fiber tractography in patients with gliomas. Journal of neurosurgery 2016; 125: 33-45 DOI: 10.3171/2015.6.JNS142203.
- 44 Zhylka A, Sollmann N, Kofler F. et al. Tracking the Corticospinal Tract in Patients With High-Grade Glioma: Clinical Evaluation of Multi-Level Fiber Tracking and Comparison to Conventional Deterministic Approaches. Frontiers in Oncology 2021; 11 DOI: 10.3389/fonc.2021.761169.
- 45 Oz G, Alger JR, Barker PB. et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology 2014; 270: 658-679 DOI: 10.1148/radiol.13130531.
- 46 Wilson M, Andronesi O, Barker PB. et al. Methodological consensus on clinical proton MRS of the brain: Review and recommendations. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 2019; 82: 527-550 DOI: 10.1002/mrm.27742.
- 47 Al-Okaili RN, Krejza J, Woo JH. et al. Intraaxial brain masses: MR imaging-based diagnostic strategy--initial experience. Radiology 2007; 243: 539-550 DOI: 10.1148/radiol.2432060493.
- 48 Julia-Sape M, Coronel I, Majos C. et al. Prospective diagnostic performance evaluation of single-voxel 1H MRS for typing and grading of brain tumours. NMR in biomedicine 2012; 25: 661-673 DOI: 10.1002/nbm.1782.
- 49 Howe FA, Barton SJ, Cudlip SA. et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 2003; 49: 223-232 DOI: 10.1002/mrm.10367.
- 50 Choi C, Ganji SK, DeBerardinis RJ. et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 2012; 18: 624-629 DOI: 10.1038/nm.2682.
- 51 Crawford FW, Khayal IS, McGue C. et al. Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBM. Journal of neuro-oncology 2009; 91: 337-351 DOI: 10.1007/s11060-008-9719-x.
- 52 Suh CH, Kim HS, Jung SC. et al. Perfusion MRI as a diagnostic biomarker for differentiating glioma from brain metastasis: a systematic review and meta-analysis. European radiology 2018; 28: 3819-3831 DOI: 10.1007/s00330-018-5335-0.
- 53 Abrigo JM, Fountain DM, Provenzale JM. et al. Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation. The Cochrane database of systematic reviews 2018; 1: CD011551 DOI: 10.1002/14651858.CD011551.pub2.
- 54 Alsop DC, Detre JA, Golay X. et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 2015; 73: 102-116 DOI: 10.1002/mrm.25197.
- 55 Essig M, Shiroishi MS, Nguyen TB. et al. Perfusion MRI: the five most frequently asked technical questions. Am J Roentgenol American journal of roentgenology 2013; 200: 24-34 DOI: 10.2214/Am J Roentgenol.12.9543.
- 56 Knopp EA, Cha S, Johnson G. et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999; 211: 791-798 DOI: 10.1148/radiology.211.3.r99jn46791.
- 57 Aronen HJ, Gazit IE, Louis DN. et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994; 191: 41-51 DOI: 10.1148/radiology.191.1.8134596.
- 58 Shin JH, Lee HK, Kwun BD. et al. Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. Am J Roentgenol American journal of roentgenology 2002; 179: 783-789 DOI: 10.2214/ajr.179.3.1790783.
- 59 Sadeghi N, Salmon I, Decaestecker C. et al. Stereotactic comparison among cerebral blood volume, methionine uptake, and histopathology in brain glioma. AJNR Am J Neuroradiol 2007; 28: 455-461
- 60 Law M, Yang S, Babb JS. et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2004; 25: 746-755
- 61 Kremer S, Grand S, Remy C. et al. Cerebral blood volume mapping by MR imaging in the initial evaluation of brain tumors. J Neuroradiol 2002; 29: 105-113
- 62 Danchaivijitr N, Waldman AD, Tozer DJ. et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation?. Radiology 2008; 247: 170-178 DOI: 10.1148/radiol.2471062089.
- 63 Paulson ES, Schmainda KM. Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 2008; 249: 601-613 DOI: 10.1148/radiol.2492071659.
- 64 Schmainda KM, Prah MA, Rand SD. et al. Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging Network Collaborative Project. AJNR American journal of neuroradiology 2018; 39: 1008-1016 DOI: 10.3174/ajnr.A5675.
- 65 Zeng Q, Jiang B, Shi F. et al. 3D Pseudocontinuous Arterial Spin-Labeling MR Imaging in the Preoperative Evaluation of Gliomas. AJNR American journal of neuroradiology 2017; 38: 1876-1883 DOI: 10.3174/ajnr.A5299.
- 66 Qiao XJ, Ellingson BM, Kim HJ. et al. Arterial spin-labeling perfusion MRI stratifies progression-free survival and correlates with epidermal growth factor receptor status in glioblastoma. AJNR American journal of neuroradiology 2015; 36: 672-677 DOI: 10.3174/ajnr.A4196.
- 67 Liu T, Cheng G, Kang X. et al. Noninvasively evaluating the grading and IDH1 mutation status of diffuse gliomas by three-dimensional pseudo-continuous arterial spin labeling and diffusion-weighted imaging. Neuroradiology 2018; 60: 693-702 DOI: 10.1007/s00234-018-2021-5.
- 68 Flies CM, Snijders TJ, Van Seeters T. et al. Perfusion imaging with arterial spin labeling (ASL)-MRI predicts malignant progression in lowgrade (WHO grade II) gliomas. Neuroradiology 2021; DOI: 10.1007/s00234-021-02737-4.
- 69 Gulani V, Calamante F, Shellock FG. et al. Gadolinium deposition in the brain: summary of evidence and recommendations. The Lancet Neurology 2017; 16: 564-570 DOI: 10.1016/S1474-4422(17)30158-8.
- 70 Neuwelt EA. Mechanisms of disease: the blood-brain barrier. Neurosurgery 2004; 54: 131-140 DOI: 10.1227/01.neu.0000097715.11966.8e.
- 71 Smirniotopoulos JG, Murphy FM, Rushing EJ. et al. Patterns of contrast enhancement in the brain and meninges. Radiographics 2007; 27: 525-551 DOI: 10.1148/rg.272065155.
- 72 Kammer NN, Coppenrath E, Treitl KM. et al. Comparison of contrast-enhanced modified T1-weighted 3D TSE black-blood and 3D MP-RAGE sequences for the detection of cerebral metastases and brain tumours. European radiology 2016; 26: 1818-1825 DOI: 10.1007/s00330-015-3975-x.
- 73 Finck T, Gempt J, Zimmer C. et al. MR imaging by 3D T1-weighted black blood sequences may improve delineation of therapy-naive high-grade gliomas. European radiology 2021; 31: 2312-2320 DOI: 10.1007/s00330-020-07314-6.
- 74 Finck T, Gempt J, Krieg SM. et al. Assessment of the Extent of Resection in Surgery of High-Grade Glioma-Evaluation of Black Blood Sequences for Intraoperative Magnetic Resonance Imaging at 3 Tesla. Cancers (Basel) 2020; 12 DOI: 10.3390/cancers12061580.
- 75 Monch S, Sollmann N, Hock A. et al. Magnetic Resonance Imaging of the Brain Using Compressed Sensing – Quality Assessment in Daily Clinical Routine. Clin Neuroradiol 2020; 30: 279-286 DOI: 10.1007/s00062-019-00789-x.
- 76 Greve T, Sollmann N, Hock A. et al. Highly accelerated time-of-flight magnetic resonance angiography using spiral imaging improves conspicuity of intracranial arterial branches while reducing scan time. Eur Radiol 2020; 30: 855-865 DOI: 10.1007/s00330-019-06442-y.
- 77 Sasi SD, Ramaniharan AK, Bhattacharjee R. et al. Evaluating feasibility of high resolution T1-perfusion MRI with whole brain coverage using compressed SENSE: Application to glioma grading. Eur J Radiol 2020; 129: 109049 DOI: 10.1016/j.ejrad.2020.109049.
- 78 Duan Y, Zhang J, Zhuo Z. et al. Accelerating Brain 3D T1-Weighted Turbo Field Echo MRI Using Compressed Sensing-Sensitivity Encoding (CS-SENSE). Eur J Radiol 2020; 131: 109255 DOI: 10.1016/j.ejrad.2020.109255.
- 79 Singh G, Manjila S, Sakla N. et al. Radiomics and radiogenomics in gliomas: a contemporary update. Br J Cancer 2021; 125: 641-657 DOI: 10.1038/s41416-021-01387-w.
- 80 Sohn CK, Bisdas S. Diagnostic Accuracy of Machine Learning-Based Radiomics in Grading Gliomas: Systematic Review and Meta-Analysis. Contrast Media Mol Imaging 2020; 2020: 2127062 DOI: 10.1155/2020/2127062.
- 81 Abdel RazekAAK, Alksas A, Shehata M. et al. Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging 2021; 12: 152 DOI: 10.1186/s13244-021-01102-6.
- 82 Mueller WM, Yetkin FZ, Hammeke TA. et al. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 1996; 39: 515-520 DOI: 10.1097/00006123-199609000-00015.
- 83 Schulder M, Maldjian JA, Liu WC. et al. Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. Journal of neurosurgery 1998; 89: 412-418 DOI: 10.3171/jns.1998.89.3.0412.
- 84 Ruff IM, Petrovich Brennan NM, Peck KK. et al. Assessment of the language laterality index in patients with brain tumor using functional MR imaging: effects of thresholding, task selection, and prior surgery. AJNR American journal of neuroradiology 2008; 29: 528-535 DOI: 10.3174/ajnr.A0841.
- 85 Tyndall AJ, Reinhardt J, Tronnier V. et al. Presurgical motor, somatosensory and language fMRI: Technical feasibility and limitations in 491 patients over 13 years. European radiology 2017; 27: 267-278 DOI: 10.1007/s00330-016-4369-4.
- 86 Zhang D, Johnston JM, Fox MD. et al. Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery 2009; 65: 226-236 DOI: 10.1227/01.NEU.0000350868.95634.CA.
- 87 Cochereau J, Deverdun J, Herbet G. et al. Comparison between resting state fMRI networks and responsive cortical stimulations in glioma patients. Human brain mapping 2016; 37: 3721-3732 DOI: 10.1002/hbm.23270.
- 88 Bizzi A, Blasi V, Falini A. et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 2008; 248: 579-589 DOI: 10.1148/radiol.2482071214.
- 89 Bartos R, Jech R, Vymazal J. et al. Validity of primary motor area localization with fMRI versus electric cortical stimulation: a comparative study. Acta neurochirurgica 2009; 151: 1071-1080 DOI: 10.1007/s00701-009-0368-4.
- 90 Meier MP, Ilmberger J, Fesl G. et al. Validation of functional motor and language MRI with direct cortical stimulation. Acta neurochirurgica 2013; 155: 675-683 DOI: 10.1007/s00701-013-1624-1.
- 91 Giussani C, Roux FE, Ojemann J. et al. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery 2010; 66: 113-120 DOI: 10.1227/01.NEU.0000360392.15450.C9.
- 92 Kuchcinski G, Mellerio C, Pallud J. et al. Three-tesla functional MR language mapping: comparison with direct cortical stimulation in gliomas. Neurology 2015; 84: 560-568 DOI: 10.1212/WNL.0000000000001226.
- 93 Beisteiner R, Pernet C, Stippich C. Can We Standardize Clinical Functional Neuroimaging Procedures?. Front Neurol 2018; 9: 1153 DOI: 10.3389/fneur.2018.01153.
- 94 Langs G, Sweet A, Lashkari D. et al. Decoupling function and anatomy in atlases of functional connectivity patterns: language mapping in tumor patients. NeuroImage 2014; 103: 462-475 DOI: 10.1016/j.neuroimage.2014.08.029.
- 95 Archip N, Clatz O, Whalen S. et al. Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. NeuroImage 2007; 35: 609-624 DOI: 10.1016/j.neuroimage.2006.11.060.
- 96 Amoruso L, Geng S, Molinaro N. et al. Oscillatory and structural signatures of language plasticity in brain tumor patients: A longitudinal study. Human brain mapping 2021; 42: 1777-1793 DOI: 10.1002/hbm.25328.
- 97 Deverdun J, van Dokkum LEH, Le Bars E. et al. Language reorganization after resection of low-grade gliomas: an fMRI task based connectivity study. Brain imaging and behavior 2020; 14: 1779-1791 DOI: 10.1007/s11682-019-00114-7.
- 98 Bryszewski B, Tybor K, Ormezowska EA. et al. Rearrangement of motor centers and its relationship to the neurological status of low-grade glioma examined on pre- and postoperative fMRI. Clinical neurology and neurosurgery 2013; 115: 2464-2470 DOI: 10.1016/j.clineuro.2013.09.034.
- 99 Holodny AI, Schulder M, Liu WC. et al. Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. AJNR American journal of neuroradiology 1999; 20: 609-612
- 100 Holodny AI, Schulder M, Liu WC. et al. The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR American journal of neuroradiology 2000; 21: 1415-1422
- 101 Hou BL, Bradbury M, Peck KK. et al. Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex. NeuroImage 2006; 32: 489-497 DOI: 10.1016/j.neuroimage.2006.04.188.
- 102 Pillai JJ, Zaca D. Comparison of BOLD cerebrovascular reactivity mapping and DSC MR perfusion imaging for prediction of neurovascular uncoupling potential in brain tumors. Technology in cancer research & treatment 2012; 11: 361-374 DOI: 10.7785/tcrt.2012.500284.
- 103 Zaca D, Jovicich J, Nadar SR. et al. Cerebrovascular reactivity mapping in patients with low grade gliomas undergoing presurgical sensorimotor mapping with BOLD fMRI. Journal of magnetic resonance imaging: JMRI 2014; 40: 383-390 DOI: 10.1002/jmri.24406.
- 104 Chang EF, Clark A, Smith JS. et al. Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. Clinical article. Journal of neurosurgery 2011; 114: 566-573 DOI: 10.3171/2010.6.JNS091246.
- 105 Hallett M. Transcranial magnetic stimulation and the human brain. Nature 2000; 406: 147-150 DOI: 10.1038/35018000.
- 106 Ruohonen J, Karhu J. Navigated transcranial magnetic stimulation. Neurophysiologie clinique = Clinical neurophysiology 2010; 40: 7-17 DOI: 10.1016/j.neucli.2010.01.006.
- 107 Ilmoniemi RJ, Ruohonen J, Karhu J. Transcranial magnetic stimulation – a new tool for functional imaging of the brain. Critical reviews in biomedical engineering 1999; 27: 241-284
- 108 Saisanen L, Julkunen P, Niskanen E. et al. Motor potentials evoked by navigated transcranial magnetic stimulation in healthy subjects. Journal of clinical neurophysiology: official publication of the American Electroencephalographic Society 2008; 25: 367-372 DOI: 10.1097/WNP.0b013e31818e7944.
- 109 Krieg SM, Lioumis P, Makela JP. et al. Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report. Acta neurochirurgica 2017; 159: 1187-1195 DOI: 10.1007/s00701-017-3187-z.
- 110 Krieg SM, Shiban E, Buchmann N. et al. Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. Journal of neurosurgery 2012; 116: 994-1001 DOI: 10.3171/2011.12.JNS111524.
- 111 Weiss Lucas C, Nettekoven C, Neuschmelting V. et al. Invasive versus non-invasive mapping of the motor cortex. Human brain mapping 2020; 41: 3970-3983 DOI: 10.1002/hbm.25101.
- 112 Conway N, Wildschuetz N, Moser T. et al. Cortical plasticity of motor-eloquent areas measured by navigated transcranial magnetic stimulation in patients with glioma. Journal of neurosurgery 2017; 1-11 DOI: 10.3171/2016.9.JNS161595.
- 113 Bulubas L, Sollmann N, Tanigawa N. et al. Reorganization of Motor Representations in Patients with Brain Lesions: A Navigated Transcranial Magnetic Stimulation Study. Brain topography 2018; 31: 288-299 DOI: 10.1007/s10548-017-0589-4.
- 114 Krieg SM, Sollmann N, Obermueller T. et al. Changing the clinical course of glioma patients by preoperative motor mapping with navigated transcranial magnetic brain stimulation. BMC cancer 2015; 15: 231 DOI: 10.1186/s12885-015-1258-1.
- 115 Sollmann N, Tanigawa N, Ringel F. et al. Language and its right-hemispheric distribution in healthy brains: an investigation by repetitive transcranial magnetic stimulation. NeuroImage 2014; 102: 776-788 DOI: 10.1016/j.neuroimage.2014.09.002.
- 116 Krieg SM, Sollmann N, Tanigawa N. et al. Cortical distribution of speech and language errors investigated by visual object naming and navigated transcranial magnetic stimulation. Brain structure & function 2016; 221: 2259-2286 DOI: 10.1007/s00429-015-1042-7.
- 117 Picht T, Krieg SM, Sollmann N. et al. A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery 2013; 72: 808-819 DOI: 10.1227/NEU.0b013e3182889e01.
- 118 Sollmann N, Kubitscheck A, Maurer S. et al. Preoperative language mapping by repetitive navigated transcranial magnetic stimulation and diffusion tensor imaging fiber tracking and their comparison to intraoperative stimulation. Neuroradiology 2016; 58: 807-818 DOI: 10.1007/s00234-016-1685-y.
- 119 Sollmann N, Fuss-Ruppenthal S, Zimmer C. et al. Investigating Stimulation Protocols for Language Mapping by Repetitive Navigated Transcranial Magnetic Stimulation. Front Behav Neurosci 2018; 12: 197 DOI: 10.3389/fnbeh.2018.00197.
- 120 Krieg SM, Tarapore PE, Picht T. et al. Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. NeuroImage 2014; 100: 219-236 DOI: 10.1016/j.neuroimage.2014.06.016.
- 121 Sollmann N, Ille S, Obermueller T. et al. The impact of repetitive navigated transcranial magnetic stimulation coil positioning and stimulation parameters on human language function. European journal of medical research 2015; 20: 47 DOI: 10.1186/s40001-015-0138-0.
- 122 Kleiser R, Staempfli P, Valavanis A. et al. Impact of fMRI-guided advanced DTI fiber tracking techniques on their clinical applications in patients with brain tumors. Neuroradiology 2010; 52: 37-46 DOI: 10.1007/s00234-009-0539-2.
- 123 Haberg A, Kvistad KA, Unsgard G. et al. Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery 2004; 54: 902-914
- 124 Krishnan R, Raabe A, Hattingen E. et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery 2004; 55: 904-914
- 125 Frey D, Strack V, Wiener E. et al. A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values. NeuroImage 2012; 62: 1600-1609 DOI: 10.1016/j.neuroimage.2012.05.059.
- 126 Krieg SM, Buchmann NH, Gempt J. et al. Diffusion tensor imaging fiber tracking using navigated brain stimulation--a feasibility study. Acta neurochirurgica 2012; 154: 555-563 DOI: 10.1007/s00701-011-1255-3.
- 127 Sollmann N, Negwer C, Ille S. et al. Feasibility of nTMS-based DTI fiber tracking of language pathways in neurosurgical patients using a fractional anisotropy threshold. Journal of neuroscience methods 2016; 267: 45-54 DOI: 10.1016/j.jneumeth.2016.04.002.
- 128 Negwer C, Ille S, Hauck T. et al. Visualization of subcortical language pathways by diffusion tensor imaging fiber tracking based on rTMS language mapping. Brain imaging and behavior 2017; 11: 899-914 DOI: 10.1007/s11682-016-9563-0.
- 129 Sollmann N, Wildschuetz N, Kelm A. et al. Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics in patients with motor-eloquent brain lesions: a combined navigated transcranial magnetic stimulation-diffusion tensor imaging fiber tracking approach. Journal of neurosurgery 2018; 128: 800-810 DOI: 10.3171/2016.11.JNS162322.
- 130 Sollmann N, Zhang H, Fratini A. et al. Risk Assessment by Presurgical Tractography Using Navigated TMS Maps in Patients with Highly Motor- or Language-Eloquent Brain Tumors. Cancers (Basel) 2020; 12 DOI: 10.3390/cancers12051264.
- 131 Sollmann N, Fratini A, Zhang H. et al. Associations between clinical outcome and tractography based on navigated transcranial magnetic stimulation in patients with language-eloquent brain lesions. Journal of neurosurgery 2019; 1-10 DOI: 10.3171/2018.12.JNS182988.
- 132 Rosenstock T, Grittner U, Acker G. et al. Risk stratification in motor area-related glioma surgery based on navigated transcranial magnetic stimulation data. Journal of neurosurgery 2017; 126: 1227-1237 DOI: 10.3171/2016.4.JNS152896.