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ABSTRACT

Magpnetic resonance imaging (MRI) in therapy-naive intracranial
glioma is paramount for neuro-oncological diagnostics, and it
provides images that are helpful for surgery planning and intra-
operative guidance during tumor resection, including assess-
ment of the involvement of functionally eloquent brain struc-
tures. This study reviews emerging MRI techniques to depict
structural information, diffusion characteristics, perfusion al-
terations, and metabolism changes for advanced neuro-oncolo-
gical imaging. In addition, it reflects current methods to map
brain function close to a tumor, including functional MRI and
navigated transcranial magnetic stimulation with derived func-
tion-based tractography of subcortical white matter pathways.
We conclude that modern preoperative MRI in neuro-oncology
offers a multitude of possibilities tailored to clinical needs, and
advancements in scanner technology (e. g., parallel imaging for
acceleration of acquisitions) make multi-sequence protocols
increasingly feasible. Specifically, advanced MRI using a multi-
sequence protocol enables noninvasive, image-based tumor
grading and phenotyping in patients with glioma. Furthermore,
the add-on use of preoperatively acquired MRI data in combina-
tion with functional mapping and tractography facilitates risk
stratification and helps to avoid perioperative functional decline
by providing individual information about the spatial location of
functionally eloquent tissue in relation to the tumor mass.

Key Points:

= Advanced preoperative MRI allows for image-based tumor
grading and phenotyping in glioma.

= Multi-sequence MRI protocols nowadays make it possible
to assess various tumor characteristics (incl. perfusion,
diffusion, and metabolism).

= Presurgical MRI in glioma is increasingly combined with
functional mapping to identify and enclose individual
functional areas.
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= Advancements in scanner technology (e. g., parallel ima-
ging) facilitate increasing application of dedicated multi-
sequence imaging protocols.

Citation Format

= Sollmann N, Zhang H, Kloth C etal. Modern preoperative
imaging and functional mapping in patients with intracranial
glioma. Fortschr Rontgenstr 2023; 195: 989-1000

ZUSAMMENFASSUNG

Der Magnetresonanztomografie (MRT) bei unbehandelten in-
trakraniellen Gliomen kommt entscheidende Bedeutung im
Rahmen der neuroonkologischen Diagnostik zu, wahrend die
MRT-Bildgebung zum Zeitpunkt vor einer neurochirurgischen
Tumorresektion zudem Bilddaten liefert, welche die chirur-
gische Planung und das intraoperative Vorgehen unterstiitzen
kénnen und insbesondere Riickschliisse auf eine mdgliche
Beteiligung funktionell eloquenter Strukturen zulassen. Die
vorliegende Arbeit stellt aktuell aufkommende MRT-basierte
Techniken vor, welche eine Darstellung von strukturellen und
diffusionsbasierten Charakteristika sowie Perfusionsverdnder-
ungen und Alterationen des Metabolismus im neuroonkologi-
schen Zusammenhang ermdglichen. Dariber hinaus stellt sie
fortschrittliche Methoden zur Kartierung von Gehirnfunktio-
nen in Nachbarschaft eines Tumors vor unter Einbezug der
funktionellen MRT sowie der navigierten transkraniellen
Magnetstimulation und funktionsbasierten Traktografie von
subkortikalen Faserbahnen der weiRen Substanz. Zusammen-
fassend er6ffnet die moderne praoperative MRT-Bildgebung
in der Neuroonkologie eine wachsende Bandbreite an Mdg-
lichkeiten gemaR der individuellen klinischen Anforderungen,

wobei Weiterentwicklungen im Bereich der Scanner-Techno-
logie (z. B. parallele Bildgebung zur Beschleunigung der Bild-
akquisition) auch Protokolle mit einer zunehmenden Anzahl
von Sequenzen moglich machen. Im Speziellen erlaubt eine
fortschrittliche MRT-Bildgebung mittels multisequenzieller
Protokolle eine nichtinvasive, bildbasierte Tumorklassifikation
und Phanotypisierung bei Patienten mit Gliomen. Des Weite-
ren ermoglicht die zusatzliche Verwendung prdoperativer
MRT-Bildgebung in Kombination mit funktioneller Kartierung
und Traktografie eine Risikostratifizierung und hilft bei der
Vermeidung perioperativer funktioneller Defizite, da indivi-
duelle Informationen tiber die rdumliche Lokalisation funktio-
nell eloquenter Strukturen in Relation zum Tumor bereitge-
stellt werden konnen.

Kernaussagen:

= Moderne praoperative MRT-Bildgebung ermdglicht eine
bildgestiitzte Tumorklassifikation und Phédnotypisierung
bei Gliomen.

= Bildgebungsprotokolle mit vielfdltigen Sequenzen kénnen
heutzutage eine Darstellung verschiedenster Tumorcha-
rakteristika gewédhrleisten (inkl. Perfusion, Diffusion sowie
Metabolismus).

= Prdoperative MRT-Bildgebung bei Gliomen wird zuneh-
mend mit funktioneller Kartierung zur Identifikation und
Abgrenzung individueller funktioneller Areale kombiniert.

= Weiterentwicklungen der Scanner-Technologie (z. B. pa-
rallele Bildgebung) kénnen zu einer weiter verbreiteten
Anwendung spezifischer multisequenzieller Bildgebungs-
protokolle beitragen.

Introduction

Gliomas represent the most common malignant entity of neo-
plasms of the central nervous system (CNS), accounting for approxi-
mately 50 % of all malignant brain tumors [1, 2]. According to the
2021 World Health Organization (WHO) classification of tumors of
the CNS, gliomas can be categorized into different entities accord-
ing to combined histological and molecular grading [3]. High-grade
astrocytoma and glioblastoma are particularly common high-grade
tumors (WHO grades 3 and 4) and have extraordinarily poor prog-
noses (5-year survival rates below 30 %) [1, 2]. Therapy in most cases
includes neurosurgical tumor resection and extended focal irradia-
tion, as well as adjuvant chemotherapy [4-6].

During the course of disease, cranial magnetic resonance ima-
ging (MRI) is paramount for the diagnosis, prognosis estimation,
and treatment response assessment and monitoring. Specifically,
initial imaging prior to tumor resection allows not only assess-
ment of the distinct location of tumor growth and involved struc-
tures but also image-based tumor grading and phenotyping [7,
8]. Furthermore, preoperative MRI provides images crucial for
neurosurgical tumor resection planning and guidance, which can

include the assessment of the involvement of functionally elo-
quent brain structures using additional techniques such as func-
tional MRI (fMRI) and tractography of subcortical white matter
(WM) pathways [9, 10]. Lately, navigated transcranial magnetic
stimulation (nTMS) has found its way into the armamentarium of
the preoperative workup of patients with glioma, providing
image-based functional mapping data with the major goal of
sparing functionally eloquent brain tissue from harm during re-
section [11, 12]. Functional data derived from fMRI or nTMS map-
ping can also be effectively combined with diffusion-weighted
MRI to establish function-based tractography of major WM bun-
dles, such as the corticospinal tract (CST) or arcuate fascicle (AF)
[12,13].

Against this background, the purpose of this narrative review
article is to provide an overview of advanced preoperative MRI
and functional mapping. Specifically, we review applications such
as diffusion-weighted imaging including fiber tractography, mag-
netic resonance spectroscopy (MRS), perfusion imaging, contrast-
enhanced T1-weighted imaging, fMRI, and nTMS. Relevant studies
were identified by PubMed search (http://www.ncbi.nIm.nih.gov/
pubmed; Supplementary Table).
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Advanced Preoperative Imaging

Overview of methods

Conventional structural MRI defines the standard approach in
neuro-oncological imaging, including axial fluid-attenuated inver-
sion recovery (FLAIR), axial diffusion-weighted imaging, axial T2-
weighted, and three-dimensional (3D) T1-weighted sequences
before and after the administration of contrast agents using a
1.5-Tesla MRI system at minimum [14, 15]. This approach is com-
monly supplemented by further advanced sequences, depending
on technical feasibility, time constraints, and individual needs
with respect to interdisciplinary clinical requirements: diffusion
tensor imaging (DTI) or specific high-resolution iso-volumetric
3D imaging may be added for dedicated neurosurgical needs or
radiosurgical planning [14, 16, 17].

Diffusion-weighted imaging

Diffusion-weighted imaging in neuro-oncology covers a broad
spectrum of different sequences and approaches. Most commonly,
the DTI technique is used during the clinical routine, which investi-
gates the shape of diffusion considering direction (eigenvectors) as
well as diffusivity (eigenvalues) and allows extraction of scalar
measures such as the fractional anisotropy (FA), either for specific
regions of interest (ROIs) or the whole brain [18, 19]. Commonly,
maximal and/or mean FA values are significantly higher in high-
grade glioma compared to low-grade glioma, with a pattern of
infiltration and disruption of fibers being more characteristic for
high-grade tumors [20-22]. Specifically, cutoff values of 0.129
(mean FA) and 0.219 (maximal FA) have been proposed to distin-
guish between low- and high-grade glioma, with a resulting speci-
ficity of 69.2%/76.9% and sensitivity of 93.3%/100% [21]. Addi-
tionally, studies used the FA to discriminate between tumors
according to the isocitrate dehydrogenase (IDH) mutation status,
which has become a relevant diagnostic marker since mutation cor-
relates to less aggressive biologic behavior and better clinical out-
come compared to the wild-type status [23]. Maximal FA and the
ratio of maximal FA (maximal FA divided by the contralateral normal
FA) were significantly different between oligodendroglial tumors
with IDH mutations and those without mutations (area under the
curve [AUC]: 0.79 and 0.82) [24, 25]. Furthermore, DTI-derived
parameters, in particular mean diffusivity and FA, can visualize tu-
mor cell densities and infiltration [26, 27]. This relevant information
is, however, overlaid by free-water contamination, which is particu-
larly relevant for the peritumoral edematous region. Thus, several
strategies have been developed to disentangle and bias-correct
the “true” diffusion signal, which could increase the diagnostic val-
ue of DTI-derived metrics [28-30].

Besides its role for tumor grading, the DTI technique can be
used to visualize the spatial course of WM pathways, which can
appear unaffected, deviated, infiltrated, or destroyed (entire or
partial disintegrity) due to the tumor mass as depicted in color-
coded FA maps (> Fig. 1) [31]. Yet, most notably, the DTI tech-
nique has been used to conduct fiber tractography to delineate
specific subcortical WM pathways prior to tumor resection.

It needs to be emphasized that although widely used in the
clinical routine, the DTI method has relevant drawbacks because

» Fig. 1 Diffusion tensor imaging (DTI). Axial fluid-attenuated in-
version recovery (FLAIR) A, DTl-derived fractional anisotropy (FA)
color map B, and T1-weighted images before C and after D admin-
istration of a gadolinium-based contrast agent. Conventional struc-
tural sequences are indicative of a left-hemispheric high-grade
glioma affecting the precentral, postcentral, and superior and mid-
dle frontal gyrus, which affects the spatial architecture of subcorti-
cal white matter (WM) pathways according to the color-coded FA
map. Specifically, tracts are deviated and partially destroyed due to
tumor growth when compared to the contralateral unaffected
hemisphere.

a single tensor can only resolve a single fiber direction within an
imaging voxel, while the vast majority of WM voxels may be
constituted of more than a single fiber [32-34]. Hence, novel
methods have been developed lately, which may partially com-
pensate for the drawbacks of DTI and could provide information
beyond a simple diffusion scalar by emphasizing the importance
of more complex 3D patterns of diffusion within the brain. Diffu-
sion kurtosis imaging (DKI) is an approach to provide a more accu-
rate model of diffusion and to capture non-Gaussian diffusion pat-
terns as representative markers for tissue heterogeneity [35]. For
glioma grading, it has been shown that DKI-derived mean, radial,
and axial kurtosis were significantly higher in high-grade than in
low-grade gliomas, probably as a result of a higher degree of tis-
sue complexity in high-grade glioma, while conventional diffusion
parameters (e.g., FA and MD) were not significantly different be-
tween grades [36]. Moreover, neurite orientation dispersion and
density imaging (NODDI) is a technique for estimating the micro-
structural complexity of dendrites and axons [37]. In glioma,
NODDI for evaluation of the T2-hyperintense region around con-
trast-enhancing tumor parts might facilitate differentiation be-
tween the region infiltrated by the tumor and edematous or nor-
mal tissue [38]. For the peritumoral region, it has also been
proposed that metrics derived from NODDI could be helpful for
differentiating between metastatic lesions and glioma [39].

A promising approach particularly for the purpose of fiber
tracking is high angular resolution diffusion imaging (HARDI),
which excels in detecting the orientational distribution of water
diffusion and, thus, could also resolve complex fiber configura-
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tions [40, 41]. Exemplarily, one study using both DTI- and HARDI-
based tractography has demonstrated that the HARDI-based ap-
proach displayed more compact fiber bundles and more neuroa-
natomically plausible fibers in the vicinity of the tumor and within
the peritumoral region, which were not tracked using DTI [42].
Furthermore, HARDI g-ball tractography (using residual boot-
strap) enables prediction of long-term language deficits following
tumor resection [43]. Another novel approach is multi-level fiber
tracking (MLFT) as an attempt to add branches to reconstructed
WM pathways that do not reach a predefined target region [44].
Specifically, based on a conventional diffusion-weighted MRI se-
quence, MLFT has been shown to provide CST reconstructions
with higher radial extent, thus enabling delineation of CST fanning
with a wider angular range [44]. While such advanced methods
have not yet been broadly implemented in the clinical routine,
they may have the potential to considerably improve diffusion-
weighted MRI including tractography.

Magnetic resonance spectroscopy

The application of MRS allows for noninvasive metabolic quantifi-
cation by means of a spectrum of peaks that represent metabolite
intensities resonating at different frequencies, which is often re-
ferred to as “virtual biopsy” [45, 46]. Proton MRS is commonly
used in the clinical setting and is derived from one or more voxels
of interest placed within the tumor volume or surrounding tissue
(> Fig. 2) [45, 46].

An early study proposed that MRS has potential in the diagno-
sis of low- vs. high-grade tumors and high-grade tumors vs. me-
tastases when used as part of a multi-sequence MRI protocol [47].
Another study investigated the added value of MRS, showing that
MRS data improved low- and high-grade tumor prediction when
compared to conventional MRI alone (AUC low-grade tumors:
0.93 vs. 0.81; AUC high-grade tumors: 0.93 vs. 0.85 for MRI with
MRS vs. conventional MRI alone) [48]. In this context, relatively in-
creased total choline (Cho) and decreased total N-acetylaspartate
(NAA) are diagnostic characteristics indicative of brain tumors
[45, 49]. Beyond tumor grading, MRS has also been shown to be
able to identify subtypes of glioma with IDH mutations, and the
prominent signal at 1.3 ppm that stems from lipids of cytoplasmic
droplets associated with necrosis or hypoxia has been shown to
correlate with higher tumor aggressiveness or poor survival [50,
51].

Perfusion imaging

Several techniques are available for measuring perfusion, includ-
ing dynamic susceptibility contrast (DSC) imaging and arterial
spin labeling (ASL) [52-54]. In the clinical setting, DSC imaging is
the most common option. It requires a bolus of contrast agent
passing through the capillary bed of the brain, causing measur-
able susceptibility-induced signal loss on T2*-weighted imaging
(> Fig.3) [55]. A fundamentally different technique is ASL, which
does not need the application of any contrast media, but instead
makes use of the labeling of arterial blood that flows to the brain
[55]. Common parameters that can be extracted from DSC perfu-
sion are relative cerebral blood flow (CBF), relative cerebral blood

» Fig.2 Proton magnetic resonance spectroscopy (MRS). Placement
of the voxel of interest for MRS in sagittal, coronal, and axial view of
the fluid-attenuated inversion recovery (FLAIR) sequence A, together
with the obtained spectrum of metabolites (Cr2/Cr: creatine, Glx: glu-
tamate and glutamine, ml: myo-inositol, Cho: choline; NAA: N-acety-
laspartate; Lac: lactate; Lip: lipids). The spectrum is indicative of a
brain tumor with slightly increased Cho (at ~3.22 ppm) and decreased
NAA (at ~2.02 ppm) compared to reference values known for healthy
brain tissue.

» Fig.3 Dynamic susceptibility contrast (DSC) perfusion. Axial
fluid-attenuated inversion recovery (FLAIR) A, color-coded map for
relative cerebral blood volume (CBV) derived from DSC imaging B,
and T1-weighted images before C and after D administration of a
gadolinium-based contrast agent. Conventional structural sequen-
ces are indicative of a right-hemispheric high-grade glioma of the
temporal lobe, with increased relative CBV at the contrast-enhanc-
ing tumor borders and decreased relative CBV in the necrotic tumor
core according to DSC perfusion.

volume (CBV), and mean transit time, while ASL measurements
may be mostly restricted to CBF [54, 55].

Notably, there is a strong correlation between the glioma
grade and DSC-derived relative CBV, with high-grade tumors typi-
cally presenting with markedly higher relative CBV than low-grade
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tumors or normal-appearing WM [56-58]. In view of earlier work
showing that increased relative CBV indeed correlates with neoan-
giogenesis, these results corroborate the potential of perfusion
imaging to visualize this central oncogenic process in high-grade
gliomas [59-61]. Furthermore, relative CBV was shown to be
increased up to about one year before contrast enhancement is
visualized on T1-weighted sequences for low-grade gliomas that
undergo a malignant transformation [62]. Yet, a very common
challenge to relative CBV quantification from DSC perfusion is
that the presence of a leaky blood-brain barrier can confound
measurements, which needs to be corrected for [63]. A multitude
of methods are available to address leakage correction, yet no uni-
versally accepted approach has been revealed [63, 64]. Neverthe-
less, in the clinical routine, most tools for the analysis of DSC per-
fusion data nowadays incorporate correction steps to mitigate
bias due to leakage.

Regarding ASL-derived CBF, both maximum CBF and maximum
relative CBF have shown to be significantly higher in high-grade
than low-grade gliomas (AUC maximum CBF: 0.83; AUC maxi-
mum relative CBF: 0.86) [65]. Furthermore, ASL-derived CBF
maps allowed stratification of survival in the case of glioblastoma
and could be used to differentiate gliomas with respect to IDH
mutation status [66, 67]. It has recently been suggested that ASL
perfusion may predict malignant progression within one year
among patients with glioma WHO grade Il [68]. In essence, the
advantages of ASL are that CBF quantification is not affected by
leakage effects, and it does not require administration of a con-
trast agent. In light of ongoing debates regarding gadolinium de-
positions from contrast media within the brain, this characteristic
could be regarded as being of special interest [69]. Yet, ASL ima-
ging typically has a lower signal-to-noise ratio than DSC perfusion,
and the relevance of contrast media-free imaging is relativized in
most cases since contrast agents are applied anyway for later T1-
weighted imaging to evaluate contrast enhancement of brain tu-
mors.

Contrast-enhanced T1-weighted imaging

Imaging with T1-weighted sequences before and after the admin-
istration of a contrast agent is an integral part of an imaging pro-
tocol in neuro-oncology. The T1 relaxation time is shortened by
gadolinium-based contrast agents, which increase tissue contrast
by accentuating areas where leakage into interstitial tissue is pres-
ent due to blood-brain barrier disruption, with resulting parench-
ymal enhancement being positively correlated to the tumor grade
with few exceptions [70, 71]. Most commonly, turbo field echo
(TFE) imaging before and after contrast administration is used to
assess tumor-related contrast enhancement and spread, but re-
cent studies have suggested improved depiction of intracranial
contrast-enhancing pathology with advanced sequences [72,
73]. Specifically, T1-weighted black-blood sequences may better
delineate therapy-naive high-grade gliomas with higher contrast-
to-noise ratios when compared to established TFE sequences,
which was also confirmed for intraoperative MRI during tumor re-
moval where assessment of the extent of tumor resection could
be accelerated [73, 74].

Advanced image analysis

With advancements in scanner technology, a multi-sequence pro-
tocol including imaging for diffusion, perfusion, metabolism, and
function in addition to conventional structural sequences (i.e.,
T1- and T2-weighted and FLAIR sequences) can become feasible
in most patients within a reasonable scan time, which is partly
due to the introduction of different image acquisition acceleration
techniques for clinical routine MRI [75-78]. The rich information
on tumor biology contained herein reflects many key cellular and
oncogenic aspects, including cellularity, proliferation, neoangio-
genesis, and invasion, with the opportunity to extract and define
quantitative MRI-based biomarkers for neuro-oncological imaging
[7]. While glioma genotyping based on tissue probes as gathered
from biopsy or tumor resection remains the reference standard,
genotype predictions by advanced MRI could support clinical de-
cision-making and individual patient management that is tailored
to the distinct tumor characteristics [7]. Leveraging the rich infor-
mation from multi-sequence MRI for training multi-parametric
models to infer tumor biology is therefore an active field of re-
search, both at initial diagnosis and along the disease course
[79-81].

Mapping of Brain Function

Overview of methods

For the preoperative workup of patients, functional mapping is of
high importance in addition to structural MRl when the tumor is
supposed to affect functionally eloquent brain structures (e.g.,
the hand knob as the center of primary motor function or the
left-hemispheric opercular and triangular parts of the inferior
frontal gyrus harboring the Broca’s area). Major techniques used
for this purpose are fMRI, magnetoencephalography (MEG), and
nTMS. While MEG is rather expensive and not widely available in
most countries, fMRI is the standard approach in many centers.
More recently, nTMS has been made available for preoperative
functional mapping [11, 12].

Functional magnetic resonance imaging

Methodologically, fMRI indirectly measures neuronal activation by
making use of the deoxyhemoglobin-to-oxyhemoglobin ratio as a
contrast mechanism, which is referred to as the blood oxygenation
level-dependent (BOLD) signal that can be used to map function
within the brain when combined with a task (e. g., finger tapping
task to detect motor function within the brain) (> Fig. 4) [82-85].
While task-based fMRI is the most common technique for presurgi-
cal functional mapping among patients with brain tumors, resting-
state fMRI, which measures spontaneous low-frequency fluctua-
tions in the BOLD signal between regions to detect functional net-
works, has also been applied recently [85-87]. Regarding preopera-
tive motor mapping by task-based fMRI, most studies demonstrated
that task-based fMRI is an adequate method to localize motor func-
tion, and it could facilitate surgical planning and decrease the time
needed for intraoperative mapping using direct electrical stimula-
tion (DES) [88-90]. Specifically, the sensitivity and specificity of
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» Fig.4 Functional magnetic resonance imaging (fMRI). Task-based
fMRI with derived activation maps in axial view to localize motor func-
tion A and language function B. A finger-tapping task and toe-move-
ment task were used to localize motor function, which was located
lateral to the tumor for upper extremity motor representation (middle
image, A) and medial to the tumor for lower extremity motor repre-
sentation (rightimage, A). Specifically, motor activation maps primarily
overlapped with the precentral gyrus bilaterally as well as with parts of
the superior frontal gyrus of the right hemisphere (middle and right
image, A). A picture-naming task was used to localize language func-
tion, which was located anterior to the tumor (right image, B). Specifi-
cally, left-hemispheric fronto-temporal parts of the language network
overlapped with the language activation map (right image, B).

task-based fMRI for the delineation of motor function have been
reported to range from 71 % to 100 % and 68 % to 100 %, respective-
ly [88-90]. Yet, the specificity and sensitivity for the preoperative
localization of language function using task-based fMRI showed
higher variability, with sensitivity ranging from 59 % to 100 % and
specificity ranging from 0% to 97 % compared to DES [88, 91, 92].
The variability regarding sensitivity and specificity across studies
may be related to a variety of factors, including differences in the
language tasks that are used, the MRI hardware, and the software
including analysis paradigms [85, 93]. For instance, an appealing
option to tackle issues related to fMRI data alignment, which is a
prerequisite for comparing features such as brain activity at cor-
responding locations across patients, can be based on global func-
tional connectivity patterns, which facilitates matching of function-
ally corresponding areas in a more accurate fashion than
conventionally used anatomical alignment [94]. Furthermore, non-
rigid image registration algorithms may overcome limitations re-
garding alignment for longitudinal studies and particularly for regis-
tering presurgical to intraoperative datasets including the registra-
tion of fMRI to anatomical sequences [95]. A longitudinal design
may be chosen in particular to track down plastic reorganization of
the brain in response to the presence and growth patterns of glioma
by means of changes in the fMRI signal and connectivity profiles
over time, which could relate to measurable reallocation of motor
or language areas [96-98].

A main criticism regarding fMRI is that tumor vasculature can
lose the ability to autoregulate, which - together with tumor-
related compressive effects on venules and larger veins and arter-

iovenous shunting - can render BOLD signal evaluations impre-
cise and, thus, impacts the accuracy of findings, particularly for
patients with high-grade glioma [99-101]. Due to this neurovas-
cular uncoupling, task-based fMRI can be considered more accu-
rate and useful in low-grade compared to high-grade gliomas
[100, 102, 103]. Another issue is that fMRI activation maps could
show false-positive results by outlining a region larger than the
actual functionally eloquent area when correlated to DES, which
could negatively influence the extent of tumor resection [104].

Navigated transcranial magnetic stimulation

Functional mapping using magnetic stimulator devices is based
on the principle of electro-magnetic induction [105-107]. Brief
high-current pulses are produced by a magnetic coil, which is
placed above the scalp [105-107]. A transient electric field is
then induced perpendicular to the magnetic field, which is cap-
able of causing neuronal activation with different extents and
effects, depending on factors such as stimulation intensity, pulse
shape, and frequency [105-107]. The fundamental difference
between nTMS and other techniques is that when a physiological
response is evoked by stimulation of a cortical area, that specific
cortical area is causally related to the response since a so-called
“virtual lesion” is induced by nTMS [12, 106]. Furthermore, it is
believed that responses to nTMS are not biased due to tumor char-
acteristics (e. g., related to increased perfusion), making the tech-
nique potentially more robust and reliable than the presurgical
alternatives.

The transformation into an advanced functional mapping device
with very close links to imaging is inherently linked to the recent
combination of magnetic stimulation with precise neuronavigation
based on structural MRI data, defining the technique as nTMS
(» Fig.5) [12, 106]. Systems with the highest accuracy to identify
and spatially enclose functional brain tissue use electric-field-based
neuronavigation, which can be achieved through individual model-
ling that takes into account parameters such as skull thickness,
affecting the coil-cortex distance, and coil tilting [12, 106]. Impor-
tantly, a simple method to guide magnetic stimulation (e.g., using
standard coil location with respect to external landmarks of the
skull) would not be acceptable for preoperative mapping in neuro-
oncology as there is a high risk of imprecision [12, 106]. The start-
ing point for mapping by nTMS is given by co-registration of the
respective structural MRI (i. e., high-resolution 3D contrast-en-
hanced T1-weighted sequences) to the actual head of the patient.
Once registration is completed, the stimulation coil can be freely
navigated during mapping and tracked on the MRI-based head
model within the nTMS system, thus allowing stimulation across
hemispheres to pinpoint sites responsible for brain functions such
as active movement or speech and language [11, 12].

The primary use case for nTMS in neuro-oncology is the map-
ping of motor function to identify the motor hotspot and boundar-
ies of the primary motor cortex (> Fig.5). Using electromyography
(EMG) of upper and lower extremity muscles during cortical stimu-
lation by the coil, motor-evoked potentials (MEPs) can be elicited
and related to a specific site of stimulation. When such MEPs reach
a certain amplitude threshold and fall within a muscle-characteris-
tic latency, motor-positive points are defined that are considered
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» Fig.5 Navigated transcranial magnetic stimulation (nTMS). Neuronavigational view with a three-dimensional (3D) head model based on a
contrast-enhanced T1-weighted sequence for motor mapping A and language mapping B by nTMS in a patient with a left-hemispheric contrast-en-
hancing tumor affecting the ventral precentral and opercular region of the inferior frontal gyrus. The white spots indicate motor-positive stimulation
points A or language-positive stimulation points B, i. e. points that are considered part of the cortical primary motor or language representation.
Judgement is based on motor-evoked potentials (MEPs) for nTMS motor mapping, which are derived from continuously recorded electromyography
(EMG) of upper and lower extremity muscles contralateral to the tumor-affected hemisphere during stimulation C. Regarding language mapping,
transient impairments during performance of a task such as object naming can be elicited by nTMS, which can be used to judge on the spatial location
and characteristics of language-positive stimulation points (e. g., typically speech arrests due to targeted stimulation of the Broca's area or semantic
paraphasia occurs due to stimulation of parietal or posterior temporal cortex). The use of precise neuronavigation qualifies nTMS as a preoperative
tool to map cortical function, which is established through infrared tracking of the coil during stimulation and registration of the patient’s head to the
respective image data D. The stimulating coil can then be tracked during pulse application in relation to individual brain anatomy D.

essential for primary motor function [108, 109]. Compared to DES,
presurgical nTMS has repeatedly demonstrated high accuracy [110,
111]. Notably, significantly better agreement between nTMS and
DES has been achieved for determining the primary motor cortex
when compared to fMRI against DES [110, 111]. Furthermore, mo-
tor mapping by nTMS may make it possible to reveal plastic reallo-
cation of the motor cortex related to tumor growth, demonstrating
location changes of the primary motor area by repeated mapping
over time [112, 113]. Regarding clinical outcome, use of preopera-
tive nTMS motor mapping could improve the extent of tumor resec-
tion and survival [114]. Yet, data from randomized controlled trials
are currently lacking to confirm positive impact on the clinical
course besides the distinct value of the technique for tumor resec-
tion planning and intraoperative guidance.

Furthermore, language mapping by nTMS is increasingly used
in patients with language-eloquent brain tumors (> Fig.5). The
principle is that stimulation by nTMS can cause several instances
of transient impairment (e. g., during performance of an object-

naming task), which can be recorded and spatially correlated to
the site of stimulation [109, 115, 116]. Correlations of results
from nTMS language mapping to DES are not as satisfactory as
for motor mapping, which currently suggests primary application
for so-called “negative mapping” (i. e., a language-negative stim-
ulation spot of nTMS is almost always also negative during DES)
[117, 118]. Thus, several methodological studies have been per-
formed to increase the specificity of nTMS language mapping,
testing a variety of stimulation protocol optimizations (e. g., coil
orientation or frequency of stimulation) [119-121].

Function-based tractography

Fiber tractography may become most powerful when combined
with functional data. Activation maps derived from fMRI-based
motor or language assessment or derived from nTMS mapping
can be used for ROI seeding, with the aim of establishing tracto-
graphy based on individual functional data [12, 13]. In this con-
text, previous studies have proposed that fMRI-guided fiber track-
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» Fig. 6 Fiber tractography based on functional mapping. Fiber track-
ing using motor maps A and language maps B derived from navigated
transcranial magnetic stimulation (nTMS) allows delineation of subcor-
tical white matter (WM) pathways. Using the nTMS-derived motor map
(motor-positive NnTMS points, green) as the region of interest (ROI) for
tractography allows for delineation of the corticospinal tract (CST) in
somatotopic organization (separate parts for upper and lower extre-
mity muscle representations, separated by the tumor volume in red;
A). Similarly, using the nTMS-derived language map (language-positive
nTMS points, purple) as the ROI enables tracking of language-related
WM pathways within the brain purely based on functional data B.

ing enables reconstruction of relevant WM bundles belonging to a
specific functional system, and that the evaluation of the lesion-
to-activation distance (i. e., distance measurement between the
tumor and a specific WM bundle as derived from fiber tractogra-
phy) may be relevant to assess postoperative functional outcome
[122-124]. Specifically, it has been proposed that the risk of post-
operative functional decline is considerably lower in patients in
whom the lesion-to-activation distance was at least 10 mm [123,
124]. Similar to the approach using fMRI-derived activation maps
as functional seeding data, motor- or language-positive points
derived from nTMS can also be used to generate ROIs for tracto-
graphy of the CST or language-related subcortical pathways such
as the AF (> Fig. 6) [125-128]. Furthermore, nTMS-based tracto-
graphy may enable preoperative risk stratification for surgery-
related motor or language impairment, making it possible to de-
fine a cutoff value of a minimum tract-to-tumor distance to avoid
perioperative functional decline [129-132]. In essence, the com-
bination of multi-sequence MRI with functional data from fMRI or
nTMS and derived tractography represents a seamless multi-mod-
al approach that combines structural and functional information
for imaging in neuro-oncological patients (> Fig. 7).

Conclusion

Advanced imaging and mapping during the preoperative workup
of neuro-oncological patients enables the noninvasive assessment
of a multitude of characteristics relevant to tumor grading and
prediction. With advancements in scanner technology including
parallel imaging for the acceleration of acquisitions, a multi-
sequence protocol including imaging for diffusion, perfusion,

» Fig.7 Multi-modal fiber tractography. Fiber tracts belonging to the
corticospinal tract (CST, orange) and the language network (pink) as
derived from tractography using cortical maps of navigated transcra-
nial magnetic stimulation (nTMS) for generation of regions of interest
(ROIs). Motor and language mapping, nTMS-based tractography, and
magnetic resonance imaging (MRI) can be effectively combined within
a multi-modal approach to outline individual structural and functional
anatomy. Fibers are fused with a fluid-attenuated inversion recovery
(FLAIR) sequence in axial view A and displayed within a three-dimen-
sional (3D) head model in sagittal view B and parasagittal view C.

metabolism, and function in addition to conventional structural
sequences becomes feasible in most patients within a reasonable
scan time. The use of preoperatively acquired MRI data in combi-
nation with nTMS mapping harbors great potential for compre-
hensive multi-modal approaches that integrate structural with
functional data.
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