Subscribe to RSS
DOI: 10.1055/a-1993-9061
Minimalinvasive Wirbelsäulenchirurgie und aufkommende neue Techniken: Navigation, Robotik und Augmented Reality
Minimally invasive spine surgery and evolving new techniques: navigation, robotics and augmented realityZusammenfassung
Minimalinvasive Operationstechniken haben sich in den letzten Jahrzehnten kontinuierlich weiterentwickelt und bedeutende technische sowie technologische Fortschritte vollzogen. So konnte sich die minimalinvasive Wirbelsäulenchirurgie von gezielten Dekompressionsverfahren bis hin zu umfangreichen Stabilisierungsoperationen in weiten Anwendungsbereichen der Wirbelsäulenchirurgie bewähren. Die Vorteile liegen in reduziertem Zugangstrauma, niedrigeren Infektionsraten und schnellerer Genesung und somit verringerter Morbidität. Zur zunehmenden Verbreitung minimalinvasiver Techniken haben die sich ebenfalls stetig weiterentwickelnde intraoperative Bildgebung und Navigation entscheidend beigetragen. Schließlich ermöglichen diese eine Orientierung mit Detektion verdeckt liegender und nicht direkt visualisierbarer Strukturen und anatomischer Landmarken. Als neue Trends der letzten Jahre kommen nun auch im Bereich der Wirbelsäulenchirurgie die Robotik und Augmented Reality zum Einsatz. Dieser Übersichtsartikel befasst sich mit den intraoperativen Techniken der Navigation, Robotik und Augmented Reality bei minimalinvasiven Wirbelsäulenoperationen.
Abstract
Minimally invasive surgical techniques evolved continuously over the past decades and made considerable technical as well as technological progress. Thus, minimally invasive spine surgery has proven its value in a wide range of spine surgery applications, from targeted decompression procedures to extensive stabilization surgery. The advantages include reduced access trauma, lower infection rates, and faster recovery and thus reduced morbidity. Intraoperative imaging and navigation, which are also constantly evolving, have contributed decisively to the increasing use of minimally invasive techniques. They allow orientation by detecting concealed structures and anatomical landmarks that cannot be visualized directly. As new trends in recent years, robotics and augmented reality are now being applied in the field of spine surgery. This review article addresses the intraoperative techniques of navigation, robotics, and augmented reality in minimally invasive spine surgery.
Schlüsselwörter
minimalinvasiv - Navigation - intraoperative Bildgebung - augmented reality - Robotik - WirbelsäulenchirurgieKeywords
minimally invasive - navigation - intraoperative imaging - augmented reality - robotics - spine surgeryPublication History
Article published online:
24 August 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Lener S, Wipplinger C, Hernandez RN. et al. Defining the MIS-TLIF: A Systematic Review of Techniques and Technologies Used by Surgeons Worldwide. Global Spine J 2020; 10: 151S-167S DOI: 10.1177/2192568219882346. (PMID: 32528800)
- 2 O'Toole JE, Eichholz KM, Fessler RG. Surgical site infection rates after minimally invasive spinal surgery. Journal of Neurosurgery: Spine 2009; 11: 471-476 DOI: 10.3171/2009.5.SPINE08633. (PMID: 19929344)
- 3 McAfee PC, Garfin SR, Rodgers WB. et al. An attempt at clinically defining and assessing minimally invasive surgery compared with traditional “open” spinal surgery. SAS J 2011; 5: 125-130 DOI: 10.1016/j.esas.2011.06.002. (PMID: 25802679)
- 4 Zhou J, Wang R, Huo X. et al. Incidence of Surgical Site Infection After Spine Surgery: A Systematic Review and Meta-analysis. Spine 2020; 45: 208-216 DOI: 10.1097/BRS.0000000000003218. (PMID: 31464972)
- 5 Imada AO, Huynh TR, Drazin D. Minimally Invasive Versus Open Laminectomy/Discectomy, Transforaminal Lumbar, and Posterior Lumbar Interbody Fusions: A Systematic Review. Cureus 2017; 9: e1488 DOI: 10.7759/cureus.1488. (PMID: 28944127)
- 6 Wang X, Borgman B, Vertuani S. et al. A systematic literature review of time to return to work and narcotic use after lumbar spinal fusion using minimal invasive and open surgery techniques. BMC Health Serv Res 2017; 17: 446-14 DOI: 10.1186/s12913-017-2398-6. (PMID: 28655308)
- 7 Nerland US, Jakola AS, Solheim O. et al. Minimally invasive decompression versus open laminectomy for central stenosis of the lumbar spine: pragmatic comparative effectiveness study. BMJ 2015; 350: h1603 DOI: 10.1136/bmj.h1603. (PMID: 25833966)
- 8 Goldstein CL, Macwan K, Sundararajan K. et al. Perioperative outcomes and adverse events of minimally invasive versus open posterior lumbar fusion: meta-analysis and systematic review. Journal of Neurosurgery: Spine 2016; 24: 416-427 DOI: 10.3171/2015.2.SPINE14973. (PMID: 26565767)
- 9 Yoon JW, Wang MY. The evolution of minimally invasive spine surgery. Journal of Neurosurgery: Spine 2019; 30: 149-158
- 10 Klingler J-H, Hubbe U, Scholz C. et al. Facet-Sparing Decompression of Lumbar Spinal Stenosis: The Minimally Invasive Bilateral Crossover Approach. J Neurol Surg A Cent Eur Neurosurg 2021; 82: 278-284 DOI: 10.1055/s-0040-1718521. (PMID: 33477189)
- 11 Walker CT, Xu DS, Godzik J. et al. Minimally invasive surgery for thoracolumbar spinal trauma. Ann Transl Med 2018; 6: 102-102 DOI: 10.21037/atm.2018.02.10. (PMID: 29707551)
- 12 Flynn SC, Eli IM, Ghogawala Z. et al. Minimally Invasive Surgery for Spinal Metastasis: A Review. World Neurosurg 2022; 159: e32-e39 DOI: 10.1016/j.wneu.2021.11.097. (PMID: 34861449)
- 13 Deininger MH, Unfried MI, Vougioukas VI. et al. Minimally invasive dorsal percutaneous spondylodesis for the treatment of adult pyogenic spondylodiscitis. Acta Neurochir (Wien) 2009; 151: 1451-1457 DOI: 10.1007/s00701-009-0377-3. (PMID: 19468676)
- 14 Janssen IK, Jörger A-K, Barz M. et al. Minimally invasive posterior pedicle screw fixation versus open instrumentation in patients with thoracolumbar spondylodiscitis. Acta Neurochir (Wien) 2021; 163: 1553-1560 DOI: 10.1007/s00701-021-04744-z. (PMID: 33655377)
- 15 Nzokou A, Weil AG, Shedid D. Minimally invasive removal of thoracic and lumbar spinal tumors using a nonexpandable tubular retractor. Journal of Neurosurgery: Spine 2013; 19: 708-715 DOI: 10.3171/2013.9.SPINE121061. (PMID: 24138063)
- 16 Krüger MT, Steiert C, Gläsker S. et al. Minimally invasive resection of spinal hemangioblastoma: feasibility and clinical results in a series of 18 patients. Journal of Neurosurgery: Spine 2019; 39: 1-10 DOI: 10.3171/2019.5.SPINE1975. (PMID: 31398701)
- 17 Beck J, Hubbe U, Klingler J-H. et al. Minimally invasive surgery for spinal cerebrospinal fluid leaks in spontaneous intracranial hypotension. Journal of Neurosurgery: Spine 2023; 38: 147-152 DOI: 10.3171/2022.7.SPINE2252. (PMID: 36087332)
- 18 Eicker SO, Mende KC, Dührsen L. et al. Minimally invasive approach for small ventrally located intradural lesions of the craniovertebral junction. Neurosurg Focus 2015; 38: E10 DOI: 10.3171/2015.2.FOCUS14799. (PMID: 25828486)
- 19 Coric D, Rossi V. Percutaneous Posterior Cervical Pedicle Instrumentation (C1 to C7) With Navigation Guidance: Early Series of 27 Cases. Global Spine J 2022; 12: 27S-33S DOI: 10.1177/21925682211029215. (PMID: 35393883)
- 20 Navarro-Ramirez R, Lang G, Lian X. et al. Total Navigation in Spine Surgery; A Concise Guide to Eliminate Fluoroscopy Using a Portable Intraoperative Computed Tomography 3-Dimensional Navigation System. World Neurosurg 2017; 100: 325-335 DOI: 10.1016/j.wneu.2017.01.025. (PMID: 28104526)
- 21 Matur AV, Palmisciano P, Duah HO. et al. Robotic and navigated pedicle screws are safer and more accurate than fluoroscopic freehand screws: a systematic review and meta-analysis. Spine J 2023; 23: 197-208
- 22 Hagan MJ, Syed S, Leary OP. et al. Pedicle Screw Placement Using Intraoperative Computed Tomography and Computer-Aided Spinal Navigation Improves Screw Accuracy and Avoids Postoperative Revisions: Single-Center Analysis of 1400 Pedicle Screws. World Neurosurg 2022; 160: e169-e179 DOI: 10.1016/j.wneu.2021.12.112. (PMID: 34990843)
- 23 Mason A, Paulsen R, Babuska JM. et al. The accuracy of pedicle screw placement using intraoperative image guidance systems. Journal of Neurosurgery: Spine 2014; 20: 196-203 DOI: 10.3171/2013.11.SPINE13413. (PMID: 24358998)
- 24 Waschke A, Walter J, Duenisch P. et al. CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4,500 screws. Eur Spine J 2013; 22: 654-660 DOI: 10.1007/s00586-012-2509-3. (PMID: 23001415)
- 25 Virk S, Qureshi S. Navigation in minimally invasive spine surgery. J Spine Surg 2019; 5: S25-S30 DOI: 10.21037/jss.2019.04.23. (PMID: 31380490)
- 26 Klingler J-H, Hubbe U, Scholz C. et al. Noninvasive patient tracker mask for spinal 3D navigation: does the required large-volume 3D scan involve a considerably increased radiation exposure?. Journal of Neurosurgery: Spine 2020; 1: 1-7 DOI: 10.3171/2020.5.SPINE20530. (PMID: 32858517)
- 27 Hecht N, Yassin H, Czabanka M. et al. Intraoperative Computed Tomography Versus 3D C-Arm Imaging for Navigated Spinal Instrumentation. Spine 2018; 43: 370-377 DOI: 10.1097/BRS.0000000000002173. (PMID: 28368989)
- 28 Klingler J-H, Naseri Y, Reinacher PC. et al. Patient radiation exposure from intraoperative computed tomography in spinal surgery. Spine J 2022; 22: 1576-1578 DOI: 10.1016/j.spinee.2022.03.008. (PMID: 35351665)
- 29 Habib N, Filardo G, Distefano D. et al. Use of Intraoperative CT Improves Accuracy of Spinal Navigation During Screw Fixation in Cervico-thoracic Region. Spine 2021; 46: 530-537 DOI: 10.1097/BRS.0000000000003827. (PMID: 33273435)
- 30 Malham GM, Wells-Quinn T. What should my hospital buy next?-Guidelines for the acquisition and application of imaging, navigation, and robotics for spine surgery. J Spine Surg 2019; 5: 155-165 DOI: 10.21037/jss.2019.02.04. (PMID: 31032450)
- 31 Ryang Y-M, Villard J, Obermüller T. et al. Learning curve of 3D fluoroscopy image-guided pedicle screw placement in the thoracolumbar spine. Spine J 2015; 15: 467-476 DOI: 10.1016/j.spinee.2014.10.003. (PMID: 25315133)
- 32 Klingler J-H, Scholz C, Krüger MT. et al. Radiation Exposure in Minimally Invasive Lumbar Fusion Surgery: A Randomized Controlled Trial Comparing Conventional Fluoroscopy and 3D Fluoroscopy-based Navigation. Spine 2021; 46: 1-8 DOI: 10.1097/BRS.0000000000003685. (PMID: 32925679)
- 33 Hayda RA, Hsu RY, DePasse JM. et al. Radiation Exposure and Health Risks for Orthopaedic Surgeons. J Am Acad Orthop Surg 2018; 26: 268-277 DOI: 10.5435/JAAOS-D-16-00342. (PMID: 29570497)
- 34 Yu E, Khan SN. Does less invasive spine surgery result in increased radiation exposure? A systematic review. Clin Orthop Relat Res 2014; 472: 1738-1748 DOI: 10.1007/s11999-014-3503-3. (PMID: 24549771)
- 35 Farah K, Coudert P, Graillon T. et al. Prospective Comparative Study in Spine Surgery Between O-Arm and Airo Systems: Efficacy and Radiation Exposure. World Neurosurg 2018; 118: e175-e184 DOI: 10.1016/j.wneu.2018.06.148. (PMID: 30257292)
- 36 Hubbe U, Klingler J-H, Roelz R. et al. Double tubular minimally invasive spine surgery: a novel technique expands the surgical visual field during resection of intradural pathologies. Journal of Neurosurgery: Spine 2022; 36: 160-163 DOI: 10.3171/2021.3.SPINE2164. (PMID: 34507298)
- 37 Barzilay Y, Kaplan L, Libergall M. Robotic assisted spine surgery--a breakthrough or a surgical toy?. Int J Med Robot 2008; 4: 195-196 DOI: 10.1002/rcs.216. (PMID: 18777514)
- 38 Devito DP, Kaplan L, Dietl R. et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine 2010; 35: 2109-2115 DOI: 10.1097/BRS.0b013e3181d323ab. (PMID: 21079498)
- 39 Ringel F, Stüer C, Reinke A. et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine 2012; 37: E496-E501 DOI: 10.1097/BRS.0b013e31824b7767. (PMID: 22310097)
- 40 Schatlo B, Molliqaj G, Cuvinciuc V. et al. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. Journal of Neurosurgery: Spine 2014; 20: 636-643 DOI: 10.3171/2014.3.SPINE13714. (PMID: 24725180)
- 41 Gebhard FT, Kraus MD, Schneider E. et al. Does computer-assisted spine surgery reduce intraoperative radiation doses?. Spine 2006; 31: 2024-7 DOI: 10.1097/01.brs.0000229250.69369.ac. (PMID: 16924222)
- 42 Kim CW, Lee Y-P, Taylor W. et al. Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery. Spine J 2008; 8: 584-590 DOI: 10.1016/j.spinee.2006.12.012. (PMID: 18586198)
- 43 Smith HE, Welsch MD, Sasso RC. et al. Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med 2008; 31: 532-537 DOI: 10.1080/10790268.2008.11753648. (PMID: 19086710)
- 44 Villard J, Ryang Y-M, Demetriades AK. et al. Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation: a prospective randomized comparison of navigated versus non-navigated freehand techniques. Spine 2014; 39: 1004-1009
- 45 Yang BP, Wahl MM, Idler CS. Percutaneous lumbar pedicle screw placement aided by computer-assisted fluoroscopy-based navigation: perioperative results of a prospective, comparative, multicenter study. Spine 2012; 37: 2055-2060 DOI: 10.1097/BRS.0b013e31825c05cd. (PMID: 23149423)
- 46 Bourgeois AC, Faulkner AR, Bradley YC. et al. Improved Accuracy of Minimally Invasive Transpedicular Screw Placement in the Lumbar Spine With 3-Dimensional Stereotactic Image Guidance: A Comparative Meta-Analysis. J Spinal Disord Tech 2015; 28: 324-329 DOI: 10.1097/BSD.0000000000000152. (PMID: 25089676)
- 47 Liu H, Chen W, Wang Z. et al. Comparison of the accuracy between robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis. Int J Comput Assist Radiol Surg 2016; 11: 2273-2281
- 48 Shin BJ, James AR, Njoku IU. et al. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. Journal of Neurosurgery: Spine 2012; 17: 113-122 DOI: 10.3171/2012.5.SPINE11399. (PMID: 22724594)
- 49 Tian N-F, Huang Q-S, Zhou P. et al. Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J 2011; 20: 846-859 DOI: 10.1007/s00586-010-1577-5. (PMID: 20862593)
- 50 Verma R, Krishan S, Haendlmayer K. et al. Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5,992 pedicle screws. Eur Spine J 2010; 19: 370-375 DOI: 10.1007/s00586-009-1258-4. (PMID: 20052504)
- 51 Gao S, Lv Z, Fang H. Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials. Eur Spine J 2018; 27: 921-930 DOI: 10.1007/s00586-017-5333-y. (PMID: 29032475)
- 52 Li C, Li W, Gao S. et al. Comparison of accuracy and safety between robot-assisted and conventional fluoroscope assisted placement of pedicle screws in thoracolumbar spine: A meta-analysis. Medicine 2021; 100: e27282 DOI: 10.1097/MD.0000000000027282.
- 53 Li H-M, Zhang R-J, Shen C-L. Accuracy of Pedicle Screw Placement and Clinical Outcomes of Robot-assisted Technique Versus Conventional Freehand Technique in Spine Surgery From Nine Randomized Controlled Trials: A Meta-analysis. Spine 2020; 45: E111-E119 DOI: 10.1097/BRS.0000000000003193. (PMID: 31404053)
- 54 Zhou L-P, Zhang R-J, Li H-M. et al. Comparison of Cranial Facet Joint Violation Rate and Four Other Clinical Indexes Between Robot-assisted and Freehand Pedicle Screw Placement in Spine Surgery: A Meta-analysis. Spine 2020; 45: E1532-E1540 DOI: 10.1097/BRS.0000000000003632. (PMID: 32756278)
- 55 Krieg SM, Meyer B. First experience with the jump-starting robotic assistance device Cirq. Neurosurg Focus 2018; 45: V3 DOI: 10.3171/2018.7.FocusVid.18108. (PMID: 29963918)
- 56 Schwendner M, Meyer B, Krieg SM. Robot-assisted pedicle screw placement. Oper Orthop Traumatol 2023; 35: 37-42 DOI: 10.1007/s00064-022-00792-5. (PMID: 36459194)
- 57 Carl B, Bopp M, Saß B. et al. Implementation of augmented reality support in spine surgery. Eur Spine J 2019; 28: 1697-1711 DOI: 10.1007/s00586-019-05969-4. (PMID: 30953169)
- 58 Rasouli JJ, Shao J, Neifert S. et al. Artificial Intelligence and Robotics in Spine Surgery. Global Spine J 2021; 11: 556-564 DOI: 10.1177/2192568220915718. (PMID: 32875928)
- 59 Burström G, Persson O, Edström E. et al. Augmented reality navigation in spine surgery: a systematic review. Acta Neurochir (Wien) 2021; 163: 843-852 DOI: 10.1007/s00701-021-04708-3. (PMID: 33506289)
- 60 Carl B, Bopp M, Saß B. et al. Spine Surgery Supported by Augmented Reality. Global Spine J 2020; 10: 41S-55S DOI: 10.1177/2192568219868217. (PMID: 32528805)
- 61 Elmi-Terander A, Burström G, Nachabe R. et al. Pedicle Screw Placement Using Augmented Reality Surgical Navigation With Intraoperative 3D Imaging: A First In-Human Prospective Cohort Study. Spine 2019; 44: 517-525 DOI: 10.1097/BRS.0000000000002876. (PMID: 30234816)
- 62 Ghaednia H, Fourman MS, Lans A. et al. Augmented and virtual reality in spine surgery, current applications and future potentials. Spine J 2021; 21: 1617-1625 DOI: 10.1016/j.spinee.2021.03.018. (PMID: 33774210)
- 63 Gibby J, Cvetko S, Javan R. et al. Use of augmented reality for image-guided spine procedures. Eur Spine J 2020; 29: 1823-1832 DOI: 10.1007/s00586-020-06495-4. (PMID: 32591881)
- 64 Hersh A, Mahapatra S, Weber-Levine C. et al. Augmented Reality in Spine Surgery: A Narrative Review. HSS J 2021; 17: 351-358 DOI: 10.1177/15563316211028595. (PMID: 34539277)
- 65 Schupper AJ, Steinberger J, Gologorsky Y. Augmented Reality in Spine Surgery. World Neurosurg 2021; 151: 290 DOI: 10.1016/j.wneu.2021.05.041. (PMID: 34243635)
- 66 Yahanda AT, Moore E, Ray WZ. et al. First in-human report of the clinical accuracy of thoracolumbar percutaneous pedicle screw placement using augmented reality guidance. Neurosurg Focus 2021; 51: E10 DOI: 10.3171/2021.5.FOCUS21217. (PMID: 34333484)
- 67 Yanni DS, Ozgur BM, Louis RG. et al. Real-time navigation guidance with intraoperative CT imaging for pedicle screw placement using an augmented reality head-mounted display: a proof-of-concept study. Neurosurg Focus 2021; 51: E11 DOI: 10.3171/2021.5.FOCUS21209. (PMID: 34333483)
- 68 Abe Y, Sato S, Kato K. et al. A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note. Journal of Neurosurgery: Spine 2013; 19: 492-501 DOI: 10.3171/2013.7.SPINE12917. (PMID: 23952323)
- 69 Auloge P, Cazzato RL, Ramamurthy N. et al. Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial. Eur Spine J 2020; 29: 1580-1589 DOI: 10.1007/s00586-019-06054-6. (PMID: 31270676)
- 70 Bhatt FR, Orosz LD, Tewari A. et al. Augmented Reality-Assisted Spine Surgery: An Early Experience Demonstrating Safety and Accuracy with 218 Screws. Global Spine J 2022; DOI: 10.1177/21925682211069321. (PMID: 35000409)
- 71 Felix B, Kalatar SB, Moatz B. et al. Augmented Reality Spine Surgery Navigation: Increasing Pedicle Screw Insertion Accuracy for Both Open and Minimally Invasive Spine Surgeries. Spine 2022; 47: 865-872 DOI: 10.1097/BRS.0000000000004338. (PMID: 35132049)
- 72 Silbermann J, Riese F, Allam Y. et al. Computer tomography assessment of pedicle screw placement in lumbar and sacral spine: comparison between free-hand and O-arm based navigation techniques. Eur Spine J 2011; 20: 875-881 DOI: 10.1007/s00586-010-1683-4. (PMID: 21253780)
- 73 Yuk FJ, Maragkos GA, Sato K. et al. Current innovation in virtual and augmented reality in spine surgery. Ann Transl Med 2021; 9: 94-94 DOI: 10.21037/atm-20-1132. (PMID: 33553387)
- 74 Léger É, Drouin S, Collins DL. et al. Quantifying attention shifts in augmented reality image-guided neurosurgery. Healthc Technol Lett 2017; 4: 188-192 DOI: 10.1049/htl.2017.0062. (PMID: 29184663)
- 75 Ille S, Ohlerth A-K, Colle D. et al. Augmented reality for the virtual dissection of white matter pathways. Acta Neurochir (Wien) 2021; 163: 895-903 DOI: 10.1007/s00701-020-04545-w. (PMID: 33026532)