Subscribe to RSS
DOI: 10.1055/a-1744-4566
p-Quinol Ethers and p-Quinone Monoacetals as Arylation and Oxidation Reagents: Tandem N-Arylation and α-Functionalization of Pyrrolidine via Redox-Neutral Three-Component Reaction
Financial support from Scientific Research Innovation Project for Postgraduates of Jiangsu province (SJCX20_0361) and Nanjing Tech University is acknowledged.
Abstract
The value of functional pyrrolidines in the fields of biology, pharmacology, catalysis, and natural product synthesis stimulates an intensive interest in developing new synthetic methods for this class of compounds, and direct functionalization of the simple pyrrolidine represents an attractive and effective approach. Herein, a metal-free protocol for direct N-arylation and α-functionalization of pyrrolidine via redox-neutral three-component reactions is reported, in which p-quinol ethers or p-quinone monoacetals serve as the arylation components and the formal oxidants for α-functionalization of pyrrolidine.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1744-4566.
- Supporting Information
Publication History
Received: 27 December 2021
Accepted after revision: 18 January 2022
Accepted Manuscript online:
18 January 2022
Article published online:
08 March 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Tamariz J, Burguenõ-Tapia E, Vázquez MA, Delgado F. In The Alkaloids: Chemistry and Biology, Vol. 80. Knölker H.-J. Academic Press; New York: 2018: 1-314
- 2a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 2b Garner P, Cox PB, Rathnayake U, Holloran N, Erdman P. ACS Med. Chem. Lett. 2019; 10: 811
- 3a Romeo G, Chiacchio U, Corsaro A, Merino P. Chem. Rev. 2010; 110: 3337
- 3b Busto E, Gotor-Fernández V, Gotor V. Chem. Rev. 2011; 111: 3998
- 3c Li J, Ye Y, Zhang Y. Org. Chem. Front. 2018; 5: 864
- 3d Iwanejko J, Wojaczyńska E. Org. Biomol. Chem. 2018; 16: 7296
- 4 Fache F, Schulz E, Tommasino ML, Lemaire M. Chem. Rev. 2000; 100: 2159
- 5a Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
- 5b Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 5c MacMillan DW. C. Nature 2008; 455: 304
- 5d Albrecht Ł, Jiang H, Jørgensen KA. Angew. Chem. Int. Ed. 2011; 50: 8492
- 5e Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
- 6a Caputo CA, Jones ND. Dalton Trans. 2007; 4627
- 6b Fache F, Schulz E, Tommasino ML, Lemaire M. Chem. Rev. 2000; 100: 2159
- 7a Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
- 7b Adrio J, Carretero JC. Chem. Commun. 2014; 50: 12434
- 7c Han M.-Y, Jia J.-Y, Wang W. Tetrahedron Lett. 2014; 55: 784
- 7d Bhat C, Tilve SG. RSC Adv. 2014; 4: 5405
- 7e Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
- 8a Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. C. Science 2016; 352: 1304
- 8b Topczewski JJ, Cabrera PJ, Saper NI, Sanford MS. Nature 2016; 531: 220
- 8c Jain P, Verma P, Xia G, Yu J.-Q. Nat. Chem. 2017; 9: 140
- 8d Shang M, Chan JZ, Cao M, Chang Y, Wang Q, Cook B, Torker S, Wasa M. J. Am. Chem. Soc. 2018; 140: 10593
- 8e Chen W, Ma L, Paul A, Seidel D. Nat. Chem. 2018; 10: 165
- 8f Chen W, Paul A, Abboud KA, Seidel D. Nat. Chem. 2020; 12: 545
- 8g Paul A, Kim JH, Daniel SD, Seidel D. Angew. Chem. Int. Ed. 2021; 60: 1625
- 9a Mitchell EA, Peschiulli A, Lefevre N, Meerpoel L, Maes BU. W. Chem. Eur. J. 2012; 18: 10092
- 9b Cheng M.-X, Yang S.-D. Synlett 2017; 28: 159
- 9c He Y, Zheng Z, Yang J, Zhang X, Fan X. Org. Chem. Front. 2021; 8: 4582
- 10a Pastine SJ, Gribkov DV, Sames D. J. Am. Chem. Soc. 2006; 128: 14220
- 10b Ahnemana DT, Doyle AG. Chem. Sci. 2016; 7: 7002
- 10c Spangler JE, Kobayashi Y, Verma P, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 11876
- 10d Xie J, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2017; 56: 7266
- 10e Han W, Mayer P, Ofial AR. Adv. Synth. Catal. 2010; 352: 1667
- 10f Niu L, Wang S, Liu J, Yi H, Liang XA, Liu T, Lei A. Chem. Commun. 2018; 54: 1659
- 10g Cao L, Zhao H, Tan Z, Guan R, Jiang H, Zhang M. Org. Lett. 2020; 22: 4781
- 10h Xu C, Shen F.-Q, Feng G, Jin J. Org. Lett. 2021; 23: 3913
- 10i Jurberg ID, Peng B, Wöstefeld E, Wasserloos M, Maulide N. Angew. Chem. Int. Ed. 2012; 51: 1950
- 11a Suga S, Suzuki S, Yoshida J. J. Am. Chem. Soc. 2002; 124: 30
- 11b Yoshida J, Suga S, Suzuki S, Knomura N, Yamamoto A, Fujiwara K. J. Am. Chem. Soc. 1999; 121: 9546
- 12a Wagaw S, Rennels RA, Buchwald SL. J. Am. Chem. Soc. 1997; 119: 8451
- 12b Zhang Y, Yang X, Yao Q, Ma D. Org. Lett. 2012; 14: 3056
- 12c Park NH, Vinogradova EV, Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2015; 54: 8259
- 12d Cosgrove SC, Thompson MP, Ahmed ST, Parmeggiani F, Turner NJ. Angew. Chem. Int. Ed. 2020; 59: 18156
- 12e Modak A, Nett AJ, Swift EC, Haibach MC, Chan VS, Franczyk TS, Shekhar S, Cook SP. ACS Catal. 2020; 10: 10495
- 13a Zhang C, De CK, Mal R, Seidel D. J. Am. Chem. Soc. 2008; 130: 416
- 13b Das D, Seidel D. Org. Lett. 2013; 15: 4358
- 13c Seidel D. Acc. Chem. Res. 2015; 48: 317
- 13d Chen W, Seidel D. Synthesis 2021; 53: 3869
- 13e Dutta S, Li B, Rickertsen DR. L, Valles DA, Seidel D. SynOpen 2021; 5: 173
- 14a Shen R, Zhang M, Xiao J, Dong C, Han L.-B. Green Chem. 2018; 20: 5111
- 14b Zhang M, Jia X, Zhu H, Fang X, Ji C, Zhao S, Han L.-B, Shen R. Org. Biomol. Chem. 2019; 17: 2972
- 14c Xiao J, Li Q, Shen R, Shimada S, Han L.-B. Adv. Synth. Catal. 2019; 361: 5715
- 14d Shen R, Wang X, Zhang S, Dong C, Zhu D, Han L.-B. Adv. Synth. Catal. 2020; 362: 942
- 14e Wang X, Zhang C, Shen R, Han L.-B. J. Org. Chem. 2020; 85: 14753
- 14f Wang X, Li G, Li X, Zhu D, Shen R. Org. Chem. Front. 2021; 8: 297
- 14g Zhang C, Li J, Wang X, Shen X, Zhu D, Shen R. J. Org. Chem. 2021; 86: 10397
- 14h Li X, Xiao T, He G, Zhu S, Zhu D, Shen R. Adv. Synth. Catal. 2021; 363: in press DOI: 10.1002/adsc.202101166.
- 15a Dohi T, Kita Y. Quinone Monoacetal Compounds in Application to Controlled Reactions with Nucleophiles. Price ER, Johnson SC. NOVA Science; New York: 2013
- 15b Kamitanaka T, Morimoto K, Dohi T, Kita Y. Synlett 2019; 30: 1125
- 15c Al-Tel TH, Srinivasulu V, Ramanathan M, Soares NC, Sebastian A, Bolognesi ML, Abu-Yousef IA, Majdalawieh A. Org. Biomol. Chem. 2020; 18: 8526
- 15d Chandra G, Patel S. ChemistrySelect 2020; 5: 12885
- 16a Yi C, She Z, Cheng Y, Qu J. Org. Lett. 2018; 20: 668
- 16b Husen S, Chaunhan A, Kumar R. Green Chem. 2020; 22: 1119
- 16c Jha P, Husen S, Kumar R. Green Chem. 2021; 23: 2950
- 17 CCDC 2129838 (12) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
For reviews, see:
For examples using electrochemical method, see:
For reviews, see:
For our recent contributions on the topic, see:
For recent reviews on the synthetic use of QMAs and related compounds in organic synthesis, see: