RSS-Feed abonnieren
DOI: 10.1055/a-1492-3293
Drug-drug Interactions between COVID-19 Treatments and Antidepressants, Mood Stabilizers/Anticonvulsants, and Benzodiazepines: Integrated Evidence from 3 Databases
Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.Abstract
Introduction The SARS-CoV-2 pandemic with psychiatric comorbidities leads to a scenario in which the use of psychotropic drugs may be required. This requires the support of evidence-based medicine to take into account possible interactions between antidepressants, mood stabilizers, benzodiazepines, and coronavirus infection treatments.
Methods Three databases were consulted: (a) Lexicomp Drug Interactions, (b) Micromedex Solutions Drugs Interactions, (c)Liverpool Drug Interaction Group for COVID-19 therapies. The CredibleMeds QTDrugs List was also queried. Hydroxychloroquine, chloroquine, azithromycin, lopinavir-ritonavir, remdesivir, favipiravir, tocilizumab, baricitinib, anakinra, and dexamethasone – drugs used for SARS-CoV-2 – were analyzed, and consensus recommendations are made.
Results The potential interactions of agomelatine, desvenlafaxine, duloxetine, milnacipran, and vortioxetine with COVID-19 treatments shall be considered less risky. Antidepressant interactions with hydroxychloroquine, chloroquine, and azithromycin enhance the risk of QT prolongation, and ECG monitoring is advised for most antidepressants. Antidepressants with lopinavir/ritonavir involve multiple CYP enzyme interactions (except with milnacipran). Gabapentin, oxcarbazepine, pregabalin, topiramate, and zonisamide are safe treatment options that have no significant interactions with COVID-19 treatments. Lithium is contraindicated with hydroxychloroquine, chloroquine, and azithromycin. Precaution should be taken in using valproic acid with lopinavir-ritonavir. The use of benzodiazepines does not present a risk of drug interaction with COVID-19 treatments, except lopinavir/ritonavir.
Conclusions Clinicians prescribing antidepressants, mood stabilizers/anticonvulsants, and benzodiazepines, should be aware of the probable risk of drug-drug interaction with COVID-19 medications and may benefit from heeding these recommendations for use to ensure patient safety.
Key words
antidepressants - anticonvulsants - lithium - benzodiazepines - SARS-CoV-2 infection - coronavirus disease 2019 - mental healthPublikationsverlauf
Eingereicht: 03. November 2020
Angenommen: 21. April 2021
Artikel online veröffentlicht:
25. Juni 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Crespo-Facorro B. Mental health and the SARS-CoV-2 pandemic. Rev Psiquiatr Salud Ment 2020; 13: 55-56 DOI: 10.1016/j.rpsm.2020.04.010.
- 2 Abarca J, Malone DC, Armstrong EP. et al. Concordance of severity ratings provided in four drug interaction compendia. J Am Pharm Assoc JAPhA 2004; 44: 136-141 DOI: 10.1331/154434504773062582.
- 3 Chao SD, Maibach HI. Lack of drug interaction conformity in commonly used drug compendia for selected at-risk dermatologic drugs. Am J Clin Dermatol 2005; 6: 105-111 DOI: 10.2165/00128071-200506020-00005.
- 4 Fulda TR, Valuck RJ, Zanden JV. et al. Disagreement among drug compendia on inclusion and ratings of drug-drug interactions. Curr Ther Res 2000; 8: 540-548
- 5 Vitry AI. Comparative assessment of four drug interaction compendia. Br J Clin Pharmacol 2007; 63: 709-714 DOI: 10.1111/j.1365-2125.2006.02809.x.
- 6 Monteith S, Glenn T. A comparison of potential psychiatric drug interactions from six drug interaction database programs. Psychiatry Res 2019; 275: 366-372 DOI: 10.1016/j.psychres.2019.03.041.
- 7 Monteith S, Glenn T, Gitlin M. et al. Potential drug interactions with drugs used for bipolar disorder: A comparison of 6 drug interaction database programs. Pharmacopsychiatry 2020; 53: 220-227 DOI: 10.1055/a-1156-4193.
- 8 Rodriguez-Menendez G, Rubio-García A, Conde-Alvarez P. et al. Short-term emotional impact of COVID-19 pandemic on Spaniard health workers. J Affect Disord 2020; DOI: 10.1016/j.jad.2020.09.079.
- 9 Wang C, Pan R, Wan X. et al. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int J Environ Res Public Health 2020; 17 DOI: 10.3390/ijerph17051729.
- 10 Fitzpatrick KM, Harris C, Drawve G. Fear of COVID-19 and the mental health consequences in America. Psychol Trauma Theory Res Pract Policy 2020; DOI: 10.1037/tra0000924.
- 11 Vindegaard N, Eriksen Benros M. COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain Behav Immun 2020; DOI: 10.1016/j.bbi.2020.05.048.
- 12 Ettman CK, Abdalla SM, Cohen GH. et al. Prevalence of depression symptoms in US adults before and during the COVID-19 pandemic. JAMA Netw Open 2020; 3: e2019686-e2019686 DOI: 10.1001/jamanetworkopen.2020.19686.
- 13 Elbay RY, Kurtulmuş A, Arpacıoğlu S. et al. Depression, anxiety, stress levels of physicians and associated factors in Covid-19 pandemics. Psychiatry Res 2020; 290: 113130. DOI: 10.1016/j.psychres.2020.113130.
- 14 Kisely S, Warren N, McMahon L. et al. Occurrence, prevention, and management of the psychological effects of emerging virus outbreaks on healthcare workers: rapid review and meta-analysis. BMJ 2020; 369: m1642 DOI: 10.1136/bmj.m1642.
- 15 Luykx JJ, van Veen SMP, Risselada A. et al. Safe and informed prescribing of psychotropic medication during the COVID-19 pandemic. Br J Psychiatry 2020; 1-4 DOI: 10.1192/bjp.2020.92.
- 16 Sanders JM, Monogue ML, Jodlowski TZ. et al. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020 DOI: 10.1001/jama.2020.6019.
- 17 Gautret P, Lagier J-C, Parola P. et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 105949. DOI: 10.1016/j.ijantimicag.2020.105949.
- 18 Jean S-S, Lee P-I, Hsueh P-R. Treatment options for COVID-19: the reality and challenges. J Microbiol Immunol Infect Wei Mian Yu Gan Ran Za Zhi 2020; DOI: 10.1016/j.jmii.2020.03.034.
- 19 Cantini F, Niccoli L, Matarrese D. et al. Baricitinib therapy in COVID-19: a pilot study on safety and clinical impact. J Infect 2020; DOI: 10.1016/j.jinf.2020.04.017.
- 20 Monteagudo LA, Boothby A, Gertner E. Continuous Intravenous anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol 2020; DOI: 10.1002/acr2.11135.
- 21 Wolters Kluwer. Wolters Kluwer. Lexicomp Interactions Module [Internet]. 2020. Im Internet: https://www.wolterskluwercdi.com/lexicomp-online/
- 22 Truven Health Analytics. Micromedex Solutions Drugs Interaction [electronic version]. Im Internet http://www.micromedexsolutions.com
- 23 University of Liverpool. Liverpool COVID-19 interactions. Im Internet: https://www.covid19-druginteractions.org/prescribing-resources
- 24 Rodríguez-Terol A, Caraballo MO, Palma D. et al. Calidad estructural de las bases de datos de interacciones. Farm Hosp 2009; 33: 134-146 DOI: 10.1016/S1130-6343(09)71155-9.
- 25 Patel RI, Beckett RD. Evaluation of resources for analyzing drug interactions. J Med Libr Assoc JMLA 2016; 104: 290-295 DOI: 10.3163/1536-5050.104.4.007.
- 26 Woosley RL, Heise CWy, Romero KA. CredibleMeds. Im Internet https://www.crediblemeds.org/
- 27 Cao B, Wang Y, Wen D. et al. A Trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N Engl J Med 2020; DOI: 10.1056/NEJMoa2001282.
- 28 Foisy MM, Yakiwchuk EM, Hughes CA. Induction effects of ritonavir: implications for drug interactions. Ann Pharmacother 2008; 42: 1048-1059 DOI: 10.1345/aph.1K615.
- 29 Mansuri Z, Adnan M, Jolly T. Ritonavir/Lopinavir and its potential interactions with psychiatric medications: a COVID-19 perspective. Prim Care Companion CNS Disord 2020; 22 -20com02677 DOI: 10.4088/PCC.20com02677.
- 30 Macías J, Pinilla A, Lao-Dominguez FA. et al. High rate of major drug-drug interactions of lopinavir-ritonavir for COVID-19 treatment. Sci Rep 2020; 10: 20958. DOI: 10.1038/s41598-020-78029-3.
- 31 Cattaneo D, Pasina L, Maggioni AP. et al. Drug-Drug interactions and prescription appropriateness in patients with COVID-19: a retrospective analysis from a reference hospital in northern Italy. Drugs Aging 2020; 37: 925-933 DOI: 10.1007/s40266-020-00812-8.
- 32 Brandariz-Nuñez D, Correas-Sanahuja M, Guarc E. et al. Potential drug-drug interactions in COVID 19 patients in treatment with lopinavir/ritonavir. Med Clin (Barc) 2020; 155: 281-287 DOI: 10.1016/j.medcli.2020.06.026.
- 33 Crescioli G, Brilli V, Lanzi C. et al. Adverse drug reactions in SARS-CoV-2 hospitalised patients: a case-series with a focus on drug-drug interactions. Intern Emerg Med 2020; DOI: 10.1007/s11739-020-02586-8.
- 34 Martínez-López-de-Castro N, Samartín-Ucha M, Paradela-Carreiro A. et al. Real-world prevalence and consequences of potential drug-drug interactions in the first-wave COVID-19 treatments. J Clin Pharm Ther 2020; DOI: 10.1111/jcpt.13337.
- 35 Houghton KT, Forrest A, Awad A. et al. Biological rationale and potential clinical use of gabapentin and pregabalin in bipolar disorder, insomnia and anxiety: protocol for a systematic review and meta-analysis. BMJ Open 2017; 7: e013433. DOI: 10.1136/bmjopen-2016-013433.
- 36 Ahmed S, Bachu R, Kotapati P. et al. Use of gabapentin in the treatment of substance use and psychiatric disorders: a systematic review. Front Psychiatry 2019; 10: 228. DOI: 10.3389/fpsyt.2019.00228.
- 37 Slee A, Nazareth I, Bondaronek P. et al. Pharmacological treatments for generalised anxiety disorder: a systematic review and network meta-analysis. Lancet Lond Engl 2019; 393: 768-777 DOI: 10.1016/S0140-6736(18)31793-8.
- 38 Baldwin DS, den Boer JA, Lyndon G. et al. Efficacy and safety of pregabalin in generalised anxiety disorder: a critical review of the literature. J Psychopharmacol Oxf Engl 2015; 29: 1047-1060 DOI: 10.1177/0269881115598411.
- 39 Hui D. Benzodiazepines for agitation in patients with delirium: selecting the right patient, right time, and right indication. Curr Opin Support. Palliat Care 2018; 12: 489-494 DOI: 10.1097/SPC.0000000000000395.
- 40 Kratz T, Diefenbacher A. Psychopharmacological treatment in older people. Dtsch Ärztebl Int 2019; 116: 508-518 DOI: 10.3238/arztebl.2019.0508.
- 41 Pun BT, Badenes R, Heras La Calle G. et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet. Respir Med 2021; 9: 239-250 DOI: 10.1016/S2213-2600(20)30552-X.
- 42 Clinical Care of Severe Acute Respiratory Infections Tool Kit. COVID-19 adaptation. Geneva: 2020 https://www.who.int/publications-detail-redirect/clinical-care-of-severe-acute-respiratory-infections-tool-kit Stand: 10.01.2021
- 43 Slaviero KA, Clarke SJ, Rivory LP. Inflammatory response: an unrecognised source of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy. Lancet Oncol 2003; 4: 224-232 DOI: 10.1016/s1470-2045(03)01034-9.
- 44 Cressman AM, Petrovic V, Piquette-Miller M. Inflammation-mediated changes in drug transporter expression/activity: implications for therapeutic drug response. Expert Rev Clin Pharmacol 2012; 5: 69-89 DOI: 10.1586/ecp.11.66.
- 45 Petrovic V, Teng S, Piquette-Miller M. Regulation of drug transporters during infection and inflammation. Mol Interv 2007; 7: 99-111 DOI: 10.1124/mi.7.2.10.
- 46 Aitken AE, Richardson TA, Morgan ET. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol 2006; 46: 123-149 DOI: 10.1146/annurev.pharmtox.46.120604.141059.
- 47 Seifert SM, Castillo-Mancilla JR, Erlandson KM. et al. Inflammation and pharmacokinetics: potential implications for HIV-infection. Expert Opin Drug Metab Toxicol 2017; 13: 641-650 DOI: 10.1080/17425255.2017.1311323.