Handchir Mikrochir Plast Chir 2020; 52(06): 521-532
DOI: 10.1055/a-1250-7878
Übersichtsarbeit

Eine aktuelle Übersicht über die Einflussfaktoren der Stammzellspender auf das regenerative Potential von Fettgewebsstammzellen

Current review of factors in the stem cell donor that influence the regenerative potential of adipose tissue-derived stem cells
Constanze Kuhlmann
,
Thilo Ludwig Schenck
,
Elisabeth Maria Haas
,
Riccardo Giunta
,
Paul Severin Wiggenhauser
Klinikum der Universität München, Abteilung Handchirurgie, Plastische Chirurgie, Ästhetische Chirurgie
› Author Affiliations

Zusammenfassung

Hintergrund Nicht nur regenerative Therapie wie zellassistierter Lipotransfer (cell assisted lipotransfer) sondern auch präklinische experimentelle Studien verwenden in der Plastischen Chirurgie Stammzellen aus Fettgewebe, sogenannte Adipose tissue-derived Stem Cells (ASCs). Hierbei haben allerdings vom jeweiligen Stammzellspender abhängige Faktoren einen entscheidenden Einfluss auf die Zellausbeute und das regenerative Potential von ASCs und der Stromal vascular Fraction (SVF). Ziel dieser Übersichtsarbeit war es daher, diese Einflussfaktoren des Stammzellspenders darzustellen und anhand des aktuellen Wissenstands zu beurteilen.

Methoden Es erfolgte eine intensive Literaturrecherche in der der National Library of Medicine, mit Fokus auf Einflussfaktoren der Stammzellspender, die eine Beeinflussung der Zellausbeute und des regenerativen Potentials von humanen ASCs und SVF in vorherigen Studien gezeigt haben.

Ergebnisse Aktuell gibt es eine Vielzahl von Studien, welche sich mit den Einflussfaktoren des Stammzellspenders auseinandersetzen. Allerdings sind diese Faktoren sehr inhomogen und teilweise sogar widersprüchlich, so dass hier noch weiterer Forschungsbedarf besteht. Dennoch gibt es einige Faktoren, die gemäß der aktuellen Literatur gehäuft untersucht wurden: Alter, Geschlecht, Gewicht, Nebenerkrankungen (z. B. Diabetes, Lipödem) sowie spezielle Medikamente (Antidepressiva, Antihormontherapie) und Chemotherapie.

Schlussfolgerung Wir empfehlen, bei experimentellen und klinischen Arbeiten mit ASCs/SVF eine Charakterisierung des Patientenkollektivs zu veröffentlichen, so dass mögliche Beeinflussungen durch oben genannte Faktoren kommuniziert werden und eine bessere Vergleichbarkeit von Studien ermöglicht wird. Darüber hinaus kann aber auch mit einer präzisen Anamnese und körperlichen Untersuchung vorab ein möglichst homogenes Patientenkollektiv für die Sammlung von Proben für wissenschaftliche Arbeiten konstruiert werden. Auch könnten die Ergebnisse dazu beitragen, den Erfolg zukünftiger ASC-basierter Therapien einzuschätzen.

Abstract

Background Regenerative therapies like cell-assisted lipotransfer or preclinical experimental studies use adipose tissue-derived stem cells (ASCs) as the main therapeutic agent. But there are also factors depending on the clinical donor that influence the cell yield and regenerative potential of human ASCs and stromal vascular fraction (SVF). Therefore, the aim of this review was to identify and evaluate these factors according to current literature.

Methods For this purpose, a systematic literature review was performed with focus on factors affecting the regenerative potential of ASCs and SVF using the National Library of Medicine.

Results Currently, there is an abundance of studies regarding clinical donor factors influencing ASCs properties. But there is some contradiction and need for further investigation. Nevertheless, we identified several recurrent factors: age, sex, weight, diabetes, lipoedema, use of antidepressants, anti-hormonal therapy and chemotherapy.

Conclusion We recommend characterisation of the ASC donor cohort in all publications, regardless of whether they are experimental studies or clinical trials. By these means, donor factors that influence experimental or clinical findings can be made transparent and results are more comparable. Moreover, this knowledge can be used for study design to form a homogenous donor cohort by precise clinical history and physical examination.



Publication History

Received: 02 May 2020

Accepted: 24 August 2020

Article published online:
08 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Referenzen

  • 1 Rennekampff H-O, Sattler G, Bull G. et al. Leitlinie „Autologe Fetttransplantation“ der Deutschen Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgen (DGPRÄC). Stand: 11.2015
  • 2 Toyserkani NM, Quaade ML, Sørensen JA. Cell-Assisted Lipotransfer: A Systematic Review of Its Efficacy. Aesthetic Plast Surg 2016; 40: 309-318
  • 3 English K. Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol 2013; 91: 19-26
  • 4 Puissant B, Barreau C, Bourin P. et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: Comparison with bone marrow mesenchymal stem cells. Br J Haematol 2005; 129: 118-129
  • 5 Klietz ML, Kückelhaus M, Kaiser HW. et al. Stammzellen in der Regenerativen Medizin – Translationale Hürden und Möglichkeiten zur Überwindung Stem cells in regenerative medicine – from bench to bedside Mesenchymale Stammzellen und ihr regeneratives Potential. Handchir Mikrochir Plast Chir 2020; 52 (04) 338-349 doi: 10.1055/a-1122–8916
  • 6 Bourin P, Bunnell BA, Casteilla L. et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International So. Cytotherapy 2013; 15: 641-648 http://dx.doi.org/10.1016/j.jcyt.2013.02.006
  • 7 Frese L, Dijkman PE, Hoerstrup SP. Adipose Tissue-Derived Stem Cells in Regenerative Medicine. Transfus Med Hemother 2016; 43 (04) 268-274 doi:10.1159/000448180
  • 8 Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen 2014; 22: 313-325
  • 9 Bacakova L, Zarubova J, Travnickova M. et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells – a review. Biotechnol Adv 2018; 36 (04) 1111-1126
  • 10 Yun IS, Jeon YR, Lee WJ. et al. Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: A pilot study. Dermatologic Surg 2012; 38: 1678-1688
  • 11 Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns 2014; 40: 1375-1383 http://dx.doi.org/10.1016/j.burns.2014.01.023
  • 12 Shingyochi Y, Orbay H, Mizuno H. Adipose-derived stem cells for wound repair and regeneration. Expert Opin Biol Ther 2015; 15: 1285-1292
  • 13 Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: A brief review on biology and translation. Stem Cell Res Ther 2017; 8: 1-10
  • 14 Gimble JM, Katz AJ, Bunnell BA. Adipose-Derived Stem Cells for Regenerative Medicine Jeffrey. Circ Res 2017; 100: 1249-1260
  • 15 Varghese J, Griffin M, Mosahebi A. et al. Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Res Ther 2017; 8: 45
  • 16 Condé-Green A, Gontijo De Amorim NF, Pitanguy I. Influence of decantation, washing and centrifugation on adipocyte and mesenchymal stem cell content of aspirated adipose tissue: A comparative study. J Plast Reconstr Aesthetic Surg 2010; 63: 1375-1381
  • 17 Taha S, Saller MM, Haas E. et al. Adipose-derived stem/progenitor cells from lipoaspirates: A comparison between the Lipivage200–5 liposuction system and the Body-Jet liposuction system. J Plast Reconstr Aesthetic Surg 2020; 73 (01) 166-175 doi: 10.1016/j.bjps.2019.06.025. Epub 28.6.2019
  • 18 ASPS Evidence Rating Scales. https://www.plasticsurgery.org/documents/medical-professionals/health-policy/evidence-practice/ASPS-Rating-Scale-March-2011.pdf Stand: 30.03.2020
  • 19 Yang HJ, Kim KJ, Kim MK. et al. The stem cell potential and multipotency of human adipose tissue-derived stem cells vary by cell donor and are different from those of other types of stem cells. Cells Tissues Organs 2014; 199: 373-383
  • 20 Reumann MK, Linnemann C, Aspera-Werz RH. et al. Donor site location is critical for proliferation, stem cell capacity, and osteogenic differentiation of adipose mesenchymal stem/stromal cells: Implications for bone tissue engineering. Int J Mol Sci 2018; 19: 1-15
  • 21 Harris LJ, Zhang P, Abdollahi H. et al. Availability of adipose-derived stem cells in patients undergoing vascular surgical procedures. J Surg Res 2010; 163: e105-e112 http://dx.doi.org/10.1016/j.jss.2010.04.025
  • 22 Faustini M, Bucco M, Chlapanidas T. et al. Nonexpanded mesenchymal stem cells for regenerative medicine: Yield in stromal vascular fraction from adipose tissues. Tissue Eng – Part C Methods 2010; 16: 1515-1521
  • 23 Choudhery MS, Badowski M, Muise A. et al. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med 2014; 12: 1-14
  • 24 Buschmann J, Gao S, Härter L. et al. Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions?. Cytotherapy 2013; 15: 1098-1105 http://dx.doi.org/10.1016/j.jcyt.2013.04.009
  • 25 Mojallal A, Lequeux C, Shipkov C. et al. Influence of age and body mass index on the yield and proliferation capacity of Adipose-derived stem cells. Aesthetic Plast Surg 2011; 35: 1097-1105
  • 26 Liu M, Lei H, Dong P. et al. Adipose-Derived Mesenchymal Stem Cells from the Elderly Exhibit Decreased Migration and Differentiation Abilities with Senescent Properties. Cell Transplant 2017; 26: 1505-1519
  • 27 Alaaeddine N, El Atat O, Saliba N. et al. Effect of age and body mass index on the yield of stromal vascular fraction. J Cosmet Dermatol 2018; 17: 1233-1239
  • 28 Buschmann J, Gao S, Härter L. et al. Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions?. Cytotherapy 2013; 15: 1098-1105 http://dx.doi.org/10.1016/j.jcyt.2013.04.009
  • 29 Mojallal A, Lequeux C, Shipkov C. et al. Influence of age and body mass index on the yield and proliferation capacity of Adipose-derived stem cells. Aesthetic Plast Surg 2011; 35: 1097-1105
  • 30 Wu W, Niklason L, Steinbacher DM. The effect of age on human adipose-derived stem cells. Plast Reconstr Surg 2013; 131: 27-37
  • 31 Kornicka K, Marycz K, Tomaszewski KA. et al. The Effect of Age on Osteogenic and Adipogenic Differentiation Potential of Human Adipose Derived Stromal Stem Cells (hASCs) and the Impact of Stress Factors in the Course of the Differentiation Process. Oxid Med Cell Longev 2015; 2015: 309169 doi: 10.1155/2015/309169. Epub 12.7.2015
  • 32 Ding DC, Chou HL, Hung WT. et al. Human adipose-derived stem cells cultured in keratinocyte serum free medium: Donor’s age does not affect the proliferation and differentiation capacities. J Biomed Sci 2013; 20: 1-11
  • 33 Alt EU, Senst C, Murthy SN. et al. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 2012; 8: 215-225 http://dx.doi.org/10.1016/j.scr.2011.11.002
  • 34 Frazier TP, Gimble JM, Devay JW. et al. Body mass index affects proliferation and osteogenic differentiation of human subcutaneous adipose tissue-derived stem cells. BMC Cell Biol 2013; 14: 34 Published 7.8.2013. doi:10.1186/1471–2121–14–34
  • 35 Pachón-Peña G, Serena C, Ejarque M. et al. Obesity Determines the Immunophenotypic Profile and Functional Characteristics of Human Mesenchymal Stem Cells From Adipose Tissue. Stem Cells Transl Med 2016; 5: 464-475 http://doi.wiley.com/10.5966/sctm.2015–0161
  • 36 Van Tienen FHJ, Van Der Kallen CJH, Lindsey PJ. et al. Preadipocytes of type 2 diabetes subjects display an intrinsic gene expression profile of decreased differentiation capacity. Int J Obes 2011; 35: 1154-1164 http://dx.doi.org/10.1038/ijo.2010.275
  • 37 Barbagallo I, Li Volti G, Galvano F. et al. Diabetic human adipose tissue-derived mesenchymal stem cells fail to differentiate in functional adipocytes. Exp Biol Med 2017; 242: 1079-1085
  • 38 Priglinger E, Wurzer C, Steffenhagen C. et al. The adipose tissue-derived stromal vascular fraction cells from lipedema patients: Are they different?. Cytotherapy 2017; 19: 849-860 http://dx.doi.org/10.1016/j.jcyt.2017.03.073
  • 39 Bauer A-T, vLukowicz D, Lossagk K. et al. Adipose stem cells from lipedema and control adipose tissue respond differently to adipogenic stimulation in vitro. Plast Reconstr Surg 2019; 144 (03) 623-632 doi: 10.1097/PRS.0000000000005918
  • 40 Parsons AM, Ciombor DM, Liu PY. et al. Regenerative Potential and Inflammation-Induced Secretion Profile of Human Adipose-Derived Stromal Vascular Cells Are Influenced by Donor Variability and Prior Breast Cancer Diagnosis. Stem Cell Rev Reports 2018; 14: 546-557
  • 41 Wahl EA, Schenck TL, Machens HG. et al. Acute stimulation of mesenchymal stem cells with cigarette smoke extract affects their migration, differentiation, and paracrine potential. Sci Rep 2016; 6: 1-9 http://dx.doi.org/10.1038/srep22957
  • 42 Schuh CMAP, Heher P, Weihs AM. et al. In vitro extracorporeal shock wave treatment enhances stemness and preserves multipotency of rat and human adipose-derived stem cells. Cytotherapy 2014; 16: 1666-1678 http://dx.doi.org/10.1016/j.jcyt.2014.07.005
  • 43 Catalano MG, Marano F, Rinella L. et al. Extracorporeal shockwaves (ESWs) enhance the osteogenic medium-induced differentiation of adipose-derived stem cells into osteoblast-like cells. J Tissue Eng Regen Med 2017; 11: 390-399
  • 44 Lee SS, Kim HR, Kim MS. et al. Influence of smartphone Wi-Fi signals on adipose-derived stem cells. J Craniofac Surg 2014; 25: 1902-1907
  • 45 Jeong YM, Sung YK, Kim WK. et al. Ultraviolet B preconditioning enhances the hair growth-promoting effects of adipose-derived stem cells via generation of reactive oxygen species. Stem Cells Dev 2013; 22: 158-168
  • 46 Lee SY, Park SH, Kim MO. et al. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells. Food Chem Toxicol 2016; 96: 62-69 http://dx.doi.org/10.1016/j.fct.2016.07.023
  • 47 Jung K, Cho JY, Soh YJ. et al. Antagonizing effects of aspartic acid against ultraviolet a-induced downregulation of the stemness of human adipose tissue-derived mesenchymal stem cells. PLoS One 2015; 10: 1-14
  • 48 Pike S, Zhang P, Wei Z. et al. In vitro effects of tamoxifen on adipose-derived stem cells. Wound Repair Regen 2015; 23: 728-736
  • 49 Choron RL, Chang S, Khan S. et al. Paclitaxel impairs adipose stem cell proliferation and differentiation. J Surg Res 2015; 196: 404-415 http://dx.doi.org/10.1016/j.jss.2015.03.026
  • 50 Kozhukharova I, Zemelko V, Kovaleva Z. et al. Therapeutic doses of doxorubicin induce premature senescence of human mesenchymal stem cells derived from menstrual blood, bone marrow and adipose tissue. Int J Hematol 2018; 107: 286-296
  • 51 Beane OS, Fonseca VC, Darling EM. Adipose-derived stem cells retain their regenerative potential after methotrexate treatment. Exp Cell Res 2014; 327: 222-233 http://dx.doi.org/10.1016/j.yexcr.2014.06.015
  • 52 Khademi M, Taghizadeh Ghavamabadi R, Taghavi MM. et al. The effects of fluoxetine on the human adipose-derived stem cell proliferation and differentiation. Fundam Clin Pharmacol 2019; 33: 286-295
  • 53 Sun BK, Kim JH, Choi JS. et al. Fluoxetine decreases the proliferation and adipogenic differentiation of human adipose-derived stem cells. Int J Mol Sci 2015; 16: 16655-16668
  • 54 Razavi S, Mostafavi FS, Mardani M. et al. Effect of T3 hormone on neural differentiation of human adipose derived stem cells. Cell Biochem Funct 2014; 32: 702-710 http://doi.wiley.com/10.1002/cbf.3074
  • 55 Girard AC, Atlan M, Bencharif K. et al. New insights into lidocaine and adrenaline effects on human adipose stem cells. Aesthetic Plast Surg 2013; 37: 144-152
  • 56 The American Society for Aesthetic Plastic Surgery. Cosmetic Surgery National Data Bank Statistics for 2018. 2018 https://www.surgery.org/sites/default/files/ASAPS-Stats2018_0.pdf Stand: 30.03.2020
  • 57 Fitzgerald SJ, Janorkar AV, Barnes A. et al. A new approach to study the sex differences in adipose tissue. J Biomed Sci 2018; 25: 1-12
  • 58 World Health Organisation. Body mass index – BMI. 2019. http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi Stand: 30.03.2020
  • 59 Mitterberger MC, Mattesich M, Zwerschke W. Bariatric surgery and diet-induced long-term caloric restriction protect subcutaneous adipose-derived stromal/progenitor cells and prolong their life span in formerly obese humans. Exp Gerontol 2014; 56: 106-113 http://dx.doi.org/10.1016/j.exger.2014.03.030
  • 60 Seitz NN, Lochbühler K, Atzendorf J. et al. Trends In Substance Use And Related Disorders: Analysis of the Epidemiological Survey of Substance Abuse 1995 to 2018. Dtsch Arztebl Int 2019; 116: 585-591
  • 61 Chang YH, Liu HW, Chu TY. et al. Cisplatin-impaired adipogenic differentiation of adipose mesenchymal stem cells. Cell Transplant 2017; 26: 1077-1087
  • 62 Poglio S, Galvani S, Bour S. et al. Adipose tissue sensitivity to radiation exposure. Am J Pathol 2009; 174: 44-53
  • 63 González EAP. Heterogeneity in Adipose Stem Cells. 2019 http://link.springer.com/10.1007/978–3-030–11096–3
  • 64 Anwer AG, Gosnell ME, Perinchery SM. et al. Visible 532 nm laser irradiation of human adipose tissue-derived stem cells: Effect on proliferation rates, mitochondria membrane potential and autofluorescence. Lasers Surg Med 2012; 44: 769-778
  • 65 Hong W, Park J, Yun W. et al. Inhibitory effect of celastrol on adipogenic differentiation of human adipose-derived stem cells. Biochem Biophys Res Commun 2018; 507: 236-241 https://doi.org/10.1016/j.bbrc.2018.11.014
  • 66 Beane OS, Darling LEO, Fonseca VC. et al. Disparate Response to Methotrexate in Stem Versus Non-Stem Cells. Stem Cell Rev Reports 2016; 12: 340-351 http://dx.doi.org/10.1007/s12015–016–9645–9
  • 67 Liang W, Xia H, Li J. et al. Human adipose tissue derived mesenchymal stem cells are resistant to several chemotherapeutic agents. Cytotechnology 2011; 63: 523-530