Klin Monbl Augenheilkd 2020; 237(03): 325-352
DOI: 10.1055/a-1097-3440
Statement
Georg Thieme Verlag KG Stuttgart · New York

Stellungnahme der DOG, der RG und des BVA zur Therapie des diabetischen Makulaödems[*]

Stand August 2019 Deutsche Ophthalmologische Gesellschaft (DOG), Retinologische Gesellschaft e. V. (RG), Berufsverband der Augenärzte Deutschlands e. V. (BVA)
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
17. März 2020 (online)

Kernaussagen

Empfehlungen/Statements

1.1 Indikationsstellung

  • Zur Indikationsstellung der Therapie eines diabetischen Makulaödems sollen mindestens folgende Untersuchungen durchgeführt werden: Bestimmung des bestkorrigierten Visus, Spaltlampenuntersuchung der vorderen Augenabschnitte (u. a. auf Rubeosis iridis), stereoskopische Untersuchung der gesamten Netzhaut in Mydriasis, Fluoreszenzangiografie, OCT.
    Empfehlungsgrad: ⇑⇑

  • Die Behandlung eines diabetischen Makulaödems mit intravitrealen Medikamenten soll nur dann erfolgen, wenn aufgrund des Befundes eine positive Beeinflussung des funktionellen (und morphologischen) Befundes erwartet werden kann.
    Empfehlungsgrad: ⇑⇑


#
#

* Diese Leitlinie erscheint auch in der Zeitschrift Der Ophthalmologe, Springer Verlag, Heidelberg.


 
  • Literatur

  • 1 Fenwick EK, Xie J, Ratcliffe J. et al. The impact of diabetic retinopathy and diabetic macular edema on health-related quality of life in type 1 and type 2 diabetes. Invest Ophthalmol Vis Sci 2012; 53: 677-684 doi:10.1167/iovs.11-8992
  • 2 Pelzek C, Lim JI. Diabetic macular edema: review and update. Ophthalmol Clin North Am 2002; 15: 555-563
  • 3 Haritoglou C, Kernt M, Wolf A. Diabetic maculopathy. Ophthalmologe 2015; 112: 871-883 quiz 884–886 doi:10.1007/s00347-015-0127-2
  • 4 Tan GS, Cheung N, Simo R. et al. Diabetic macular oedema. Lancet Diabetes Endocrinol 2017; 5: 143-155 doi:10.1016/S2213-8587(16)30052-3
  • 5 Spital G. Treatment of diabetic macular edema. Diabetologe 2018; 14: 577-589 doi:10.1007/s11428-018-0404-1
  • 6 Claessen H, Kvitkina T, Narres M. et al. Markedly decreasing incidence of blindness in people with and without diabetes in southern Germany. Diabetes Care 2018; 41: 478-484 doi:10.2337/dc17-2031
  • 7 Kahm K, Laxy M, Schneider U. et al. Health care costs associated with incident complications in patients with type 2 diabetes in Germany. Diabetes Care 2018; DOI: 10.2337/dc17-1763.
  • 8 Kreft D, McGuinness MB, Doblhammer G. et al. Diabetic retinopathy screening in incident diabetes mellitus type 2 in Germany between 2004 and 2013 – a prospective cohort study based on health claims data. PLoS ONE 2018; 13: e195426 doi:10.1371/journal.pone.0195426
  • 9 Fullerton B, Erler A, Pohlmann B. et al. Predictors of dropout in the German disease management program for type 2 diabetes. BMC Health Serv Res 2012; 12: 8 doi:10.1186/1472-6963-12-8
  • 10 BARMER GEK. Qualitätssicherungsbericht 2017 Besser-Leben-Programm Diabetes mellitus Typ 1. 2017
  • 11 Kassenärztliche Bundesvereinigung (KBV). Disease-Management-Programm Diabetes mellitus Typ 2 – Qualitätszielerreichung 2016. In: Indikationsspezifische Berichte für die Gemeinsamen Einrichtungen bzw. Qualitätsberichte aus 15 Kassenärztlichen Vereinigungen. Im Internet: https://www.kbv.de/html/dmp.php Stand: 31.05.2019
  • 12 Groos SK, Macare C, Weber A, Hagen B. Qualitätssicherungsbericht 2017 Disease Management Programme Nordrhein. 2018
  • 13 Lindenmeyer A, Sturt JA, Hipwell A. et al. Influence of primary care practices on patientsʼ uptake of diabetic retinopathy screening: a qualitative case study. Br J Gen Pract 2014; 64: e484-e492 doi:10.3399/bjgp14X680965
  • 14 Brown DM, Schmidt-Erfurth U, Do DV. et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology 2015; 122: 2044-2052 doi:10.1016/j.ophtha.2015.06.017
  • 15 Mitchell P, Bandello F, Schmidt-Erfurth U. et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 2011; 118: 615-625 doi:10.1016/j.ophtha.2011.01.031
  • 16 Boyer DS, Yoon YH, Belfort jr. R. et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology 2014; 121: 1904-1914 doi:10.1016/j.ophtha.2014.04.024
  • 17 Campochiaro PA, Brown DM, Pearson A. et al. Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology 2012; 119: 2125-2132 doi:10.1016/j.ophtha.2012.04.030
  • 18 Heng LZ, Sivaprasad S, Crosby-Nwaobi R. et al. A prospective randomised controlled clinical trial comparing a combination of repeated intravitreal Ozurdex and macular laser therapy versus macular laser only in centre-involving diabetic macular oedema (OZLASE study). Br J Ophthalmol 2016; 100: 802-807 doi:10.1136/bjophthalmol-2015-307136
  • 19 Ziemssen F, Feltgen N, Holz FG. et al. Demographics of patients receiving Intravitreal anti-VEGF treatment in real-world practice: healthcare research data versus randomized controlled trials. BMC Ophthalmol 2017; 17: 7 doi:10.1186/s12886-017-0401-y
  • 20 Hautala N, Aikkila R, Korpelainen J. et al. Marked reductions in visual impairment due to diabetic retinopathy achieved by efficient screening and timely treatment. Acta Ophthalmol 2014; 92: 582-587 doi:10.1111/aos.12278
  • 21 Davies R, Roderick P, Canning C. et al. The evaluation of screening policies for diabetic retinopathy using simulation. Diabet Med 2002; 19: 762-770
  • 22 Bragge P, Gruen RL, Chau M. et al. Screening for presence or absence of diabetic retinopathy: a meta-analysis. Arch Ophthalmol 2011; 129: 435-444 doi:10.1001/archophthalmol.2010.319
  • 23 Happich M, John J, Stamenitis S. et al. The quality of life and economic burden of neuropathy in diabetic patients in Germany in 2002 – results from the Diabetic Microvascular Complications (DIMICO) study. Diabetes Res Clin Pract 2008; 81: 223-230 doi:10.1016/j.diabres.2008.03.019
  • 24 Cavan D, Makaroff LE, da Rocha Fernandes J. et al. Global perspectives on the provision of diabetic retinopathy screening and treatment: survey of health care professionals in 41 countries. Diabetes Res Clin Pract 2018; 143: 170-178 doi:10.1016/j.diabres.2018.07.004
  • 25 Rock D, Schnellbacher E, Fritsche A. et al. Knowledge of patients and health professionals about diabetes-related eye diseases (risk factors, screening, treatment). Diabetol Stoffwechs 2018; 13: 263-269 doi:10.1055/a-0578-8112
  • 26 Bundesärztekammer, Kassenärztliche Bundesvereinigung, Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Prävention und Therapie von Netzhautkomplikationen bei Diabetes – Langfassung. 2015 Im Internet: http://www.netzhautkomplikationen.versorgungsleitlinien.de Stand: 30.12.2019
  • 27 Yau JW, Rogers SL, Kawasaki R. et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012; 35: 556-564 doi:10.2337/dc11-1909
  • 28 Klein R, Klein BE, Moss SE. et al. The Wisconsin epidemiologic study of diabetic retinopathy. IV. Diabetic macular edema. Ophthalmology 1984; 91: 1464-1474
  • 29 Davies MJ, DʼAlessio DA, Fradkin J. et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018; 61: 2461-2498 doi:10.1007/s00125-018-4729-5
  • 30 Sabanayagam C, Banu R, Chee ML. et al. Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol 2018; DOI: 10.1016/S2213-8587(18)30128-1.
  • 31 Goffrier B, Schulz M, Bätzing-Feigenbaum J, Holstiege J. Administrative Prävalenzen und Inzidenzen des Diabetes mellitus von 2009 bis 2015. Versorgungsatlas. In: (Zi) ZdkV 2017
  • 32 Gross JG, Glassman AR, Liu D. et al. Five-year outcomes of panretinal photocoagulation vs. Intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA Ophthalmol 2018; 136: 1138-1148 doi:10.1001/jamaophthalmol.2018.3255
  • 33 Bressler SB, Beaulieu WT, Glassman AR. et al. Panretinal photocoagulation versus ranibizumab for proliferative diabetic retinopathy: factors associated with vision and edema outcomes. Ophthalmology 2018; 125: 1776-1783 doi:10.1016/j.ophtha.2018.04.039
  • 34 Sivaprasad S, Prevost AT, Bainbridge J. et al. Clinical efficacy and mechanistic evaluation of aflibercept for proliferative diabetic retinopathy (acronym CLARITY): a multicentre phase II b randomised active-controlled clinical trial. Bmj Open 2015; 5: e8405 doi:10.1136/bmjopen-2015-008405
  • 35 Virgili G, Parravano M, Evans JR. et al. Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis. Cochrane Database Syst Rev 2018; DOI: 10.1002/14651858.CD007419.pub6.
  • 36 Jorge EC, Jorge EN, Botelho M. et al. Monotherapy laser photocoagulation for diabetic macular oedema. Cochrane Database Syst Rev 2018; (10) CD10859 DOI: 10.1002/14651858.CD010859.pub2.
  • 37 Mehta H, Hennings C, Gillies MC. et al. Anti-vascular endothelial growth factor combined with intravitreal steroids for diabetic macular oedema. Cochrane Database Syst Rev 2018; DOI: 10.1002/14651858.CD011599.pub2.
  • 38 Wells JA, Glassman AR, Ayala AR. et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology 2016; 1236: 1351-1359 doi:10.1016/j.ophtha.2016.02.022
  • 39 Maturi RK, Glassman AR, Liu D. et al. Effect of adding dexamethasone to continued ranibizumab treatment in patients with persistent diabetic macular edema: a DRCR network phase 2 randomized clinical trial. Jama Ophthalmol 2018; 136: 29-38 doi:10.1001/jamaophthalmol.2017.4914
  • 40 Callanan DG, Loewenstein A, Patel SS. et al.Li X-Y. A multicenter, 12-month randomized study comparing dexamethasone intravitreal implant with ranibizumab in patients with diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 2017; 255: 463-473
  • 41 Weiss M, Sim DA, Herold T. et al. Compliance and adherence of patients with diabetic macular edema to Intravitreal anti-vascular endothelial growth factor therapy in daily practice. Retina 2018; 38: 2293-2300 doi:10.1097/IAE.0000000000001892
  • 42 Ehlken C, Helms M, Bohringer D. et al. Association of treatment adherence with real-life VA outcomes in AMD, DME, and BRVO patients. Clin Ophthalmol 2018; 12: 13-20 doi:10.2147/OPTH.S151611
  • 43 Paschke R, Wuthe FG, Kuhn K. et al. Comparison of risk factors and guideline oriented prevention and therapy of diabetic retinopathy between type 2 diabetes patients undergoing laser therapy and type 2 diabetes outpatients. Med Klin 2010; 105: 772-778 doi:10.1007/s00063-010-1131-6
  • 44 Brown DM, Nguyen QD, Marcus DM. et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology 2013; 120: 2013-2022 doi:10.1016/j.ophtha.2013.02.034
  • 45 Ehlers JP, Jiang AC, Boss JD. et al. Quantitative ultra-widefield angiography and diabetic retinopathy severity: an assessment of panretinal leakage index, ischemic index and microaneurysm count. Ophthalmology 2019; DOI: 10.1016/j.ophtha.2019.05.034.
  • 46 Kim EJ, Lin WV, Rodriguez SM. et al. Treatment of diabetic macular edema. Curr Diab Rep 2019; 19: 68 doi:10.1007/s11892-019-1188-4
  • 47 Gall MA, Rossing P, Skott P. et al. Prevalence of micro- and macroalbuminuria, arterial hypertension, retinopathy and large vessel disease in European type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1991; 34: 655-661
  • 48 Hammes HP, Welp R, Kempe HP. et al. Risk factors for retinopathy and DME in type 2 diabetes-results from the German/Austrian DPV database. PLoS ONE 2015; 10: e132492 doi:10.1371/journal.pone.0132492
  • 49 Hemmingsen B, Lund SS, Gluud C. et al. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev 2013; DOI: 10.1002/14651858.CD008143.pub3.
  • 50 Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med 2012; 366: 1227-1239 doi:10.1056/NEJMra1005073
  • 51 Hirsch IB, Brownlee M. Beyond hemoglobin A1c–need for additional markers of risk for diabetic microvascular complications. JAMA 2010; 303: 2291-2292 doi:10.1001/jama.2010.785
  • 52 Kim YJ, Shin S, Han DJ. et al. Long-term effects of pancreas transplantation on diabetic retinopathy and incidence and predictive risk factors for early worsening. Transplantation 2018; 102: e30-e38 doi:10.1097/TP.0000000000001958
  • 53 Bain SC, Klufas MA, Ho A. et al. Worsening of diabetic retinopathy with rapid improvement in systemic glucose control: a review. Diabetes Obes Metab 2018; DOI: 10.1111/dom.13538.
  • 54 Feldman-Billard S, Larger E, Massin P. Standards for screeningand surveillance of ocular complications in people with diabetes SFDsg. Early worsening of diabetic retinopathy after rapid improvement of blood glucose control in patients with diabetes. Diabetes Metab 2018; 44: 4-14 doi:10.1016/j.diabet.2017.10.014
  • 55 Lim SW, van Wijngaarden P, Harper CA. et al. Early worsening of diabetic retinopathy due to intensive glycaemic control. Clin Exp Ophthalmol 2018; DOI: 10.1111/ceo.13393.
  • 56 Diabetic Retinopathy Clinical Research Network, Brucker AJ, Qin H, Antoszyk AN. . et al. Observational study of the development of diabetic macular edema following panretinal (scatter) photocoagulation given in 1 or 4 sittings. Arch Ophthalmol 2009; 127: 132-140 doi:10.1001/archophthalmol.2008.565
  • 57 Figueira J, Fletcher E, Massin P. et al. Ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk proliferative diabetic retinopathy (PROTEUS study). Ophthalmology 2018; 125: 691-700 doi:10.1016/j.ophtha.2017.12.008
  • 58 Oh JH, Kim SW, Kwon SS. et al. The change of macular thickness following single-session pattern scan laser panretinal photocoagulation for diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2015; 253: 57-63 doi:10.1007/s00417-014-2663-x
  • 59 Bressler SB, Beaulieu WT, Glassman AR. et al. Factors associated with worsening proliferative diabetic retinopathy in eyes treated with panretinal photocoagulation or ranibizumab. Ophthalmology 2017; 124: 431-439 doi:10.1016/j.ophtha.2016.12.005
  • 60 Zhu B, Ma Y, Lin S. et al. Vision-related quality of life and visual outcomes from cataract surgery in patients with vision-threatening diabetic retinopathy: a prospective observational study. Health Qual Life Outcomes 2017; 15: 175 doi:10.1186/s12955-017-0751-4
  • 61 Brazier J, Muston D, Konwea H. et al. Evaluating the relationship between visual acuity and utilities in patients with diabetic macular edema enrolled in Intravitreal aflibercept studies. Invest Ophthalmol Vis Sci 2017; 58: 4818-4825 doi:10.1167/iovs.17-21945
  • 62 Trento M, Durando O, Lavecchia S. et al. Vision related quality of life in patients with type 2 diabetes in the EUROCONDOR trial. Endocrine 2017; 57: 83-88 doi:10.1007/s12020-016-1097-0
  • 63 Trento M, Passera P, Trevisan M. et al. Quality of life, impaired vision and social role in people with diabetes: a multicenter observational study. Acta Diabetol 2013; 50: 873-877 doi:10.1007/s00592-013-0470-1
  • 64 Man RE, Fenwick EK, Sabanayagam C. et al. Differential impact of unilateral and bilateral classifications of diabetic retinopathy and diabetic macular edema on vision-related quality of life. Invest Ophthalmol Vis Sci 2016; 57: 4655-4660 doi:10.1167/iovs.16-20165
  • 65 Hodgson N, Wu F, Zhu J. et al. Economic and quality of life benefits of anti-VEGF therapy. Mol Pharm 2016; 13: 2877-2880 doi:10.1021/acs.molpharmaceut.5b00775
  • 66 Willis JR, Doan QV, Gleeson M. et al. Vision-related functional burden of diabetic retinopathy across severity levels in the United States. JAMA Ophthalmol 2017; 135: 926-932 doi:10.1001/jamaophthalmol.2017.2553
  • 67 Lachenmayr B. Recommendations for assessment of twilight vision and glare sensitivity for safe driving. Ophthalmologe 2013; 110: 1160-1162 doi:10.1007/s00347-013-2997-5
  • 68 Seeger R, Lehmann R. Driving ability and fitness to drive in people with diabetes mellitus. Ther Umsch 2011; 68: 249-252 doi:10.1024/0040-5930/a000159
  • 69 Mackie SW, Webb LA, Hutchison BM. et al. How much blame can be placed on laser photocoagulation for failure to attain driving standards?. Eye 1995; 9 (Pt 4): 517-525 doi:10.1038/eye.1995.118
  • 70 Stiefelhagen P. Wann ein Diabetiker Autofahren darf – und wann nicht. MMW Fortschr Med 2016; 158: 26 doi:10.1007/s15006-016-9078-z
  • 71 Chatziralli I, Santarelli M, Patrao N. et al. Identification of time point to best define “sub-optimal response” following intravitreal ranibizumab therapy for diabetic macular edema based on real-life data. Eye 2017; 31: 1594-1599 doi:10.1038/eye.2017.111
  • 72 Bressler NM, Varma R, Mitchell P. et al. Effect of ranibizumab on the decision to drive and vision function relevant to driving in patients with diabetic macular edema: report from RESTORE, RIDE, and RISE trials. JAMA Ophthalmol 2016; 134: 160-166 doi:10.1001/jamaophthalmol.2015.4636
  • 73 Novartis. Fachinformation Lucentis. EU Zulassungsnummer EU/1/06/374/001. Rote Liste Service GmbH; 2018
  • 74 Bayer. Fachinformation Eylea. EU Zulassungsnummer EU/1/12/797/002. Rote Liste Service GmbH; 2018
  • 75 Jeganathan VS, Wang JJ, Wong TY. Ocular associations of diabetes other than diabetic retinopathy. Diabetes Care 2008; 31: 1905-1912 doi:10.2337/dc08-0342
  • 76 Herse PR. A review of manifestations of diabetes mellitus in the anterior eye and cornea. Am J Optom Physiol Opt 1988; 65: 224-230
  • 77 Ansari AS, de Lusignan S, Hinton W. et al. The association between diabetes, level of glycaemic control and eye infection: cohort database study. Prim Care Diabetes 2017; 11: 421-429 doi:10.1016/j.pcd.2017.05.009
  • 78 Goebbels M. Tear secretion and tear film function in insulin dependent diabetics. Br J Ophthalmol 2000; 84: 19-21
  • 79 Grus FH, Sabuncuo P, Dick HB. et al. Changes in the tear proteins of diabetic patients. BMC Ophthalmol 2002; 2: 4
  • 80 Tumosa N. Eye disease and the older diabetic. Clin Geriatr Med 2008; 24: 515-527 doi:10.1016/j.cger.2008.03.002
  • 81 Centers for Disease Control and Prevention (CDC). Prevalence of visual impairment and selected eye diseases among persons aged >/= 50 years with and without diabetes–United States, 2002. MMWR Morb Mortal Wkly Rep 2004; 53: 1069-1071
  • 82 Klemm M, Gesser C. The relevance of diabetes for patients with glaucoma. Klin Monatsbl Augenheilkd 2014; 231: 116-120 doi:10.1055/s-0033-1360143
  • 83 Zhou M, Wang W, Huang W. et al. Diabetes mellitus as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. PLoS One 2014; 9: e102972 doi:10.1371/journal.pone.0102972
  • 84 Federführendes Redaktionsteam. Ziemssen F, Helbig H, Lemmen KD. et al. Statement of the German Ophthalmological Society, the Retina Society and the Professional Association of German Ophthalmologists: treatment of diabetic maculopathy (April 2013). Klin Monatsbl Augenheilkd 2013; 230: 614-628 doi:10.1055/s-0032-1328663
  • 85 Goebel W, Franke R. Retinal thickness in diabetic retinopathy: comparison of optical coherence tomography, the retinal thickness analyzer, and fundus photography. Retina 2006; 26: 49-57
  • 86 Hirano T, Iesato Y, Toriyama Y. et al. Detection of fovea-threatening diabetic macular edema by optical coherence tomography to maintain good vision by prophylactic treatment. Ophthalmic Res 2014; 52: 65-73 doi:10.1159/000362372
  • 87 Diabetic Retinopathy Clinical Research Network. Bressler NM, Miller KM, Beck RW. et al. Observational study of subclinical diabetic macular edema. Eye 2012; 26: 833-840 doi:10.1038/eye.2012.53
  • 88 Leal J, Luengo-Fernandez R, Stratton IM. et al. Cost-effectiveness of digital surveillance clinics with optical coherence tomography versus hospital eye service follow-up for patients with screen-positive maculopathy. Eye 2018; DOI: 10.1038/s41433-018-0297-7.
  • 89 Heng LZ, Pefianaki M, Hykin P. et al. Interobserver agreement in detecting spectral-domain optical coherence tomography features of diabetic macular edema. PLoS ONE 2015; 10: e126557
  • 90 Virgili G, Menchini F, Dimastrogiovanni AF. et al. Optical coherence tomography versus stereoscopic fundus photography or biomicroscopy for diagnosing diabetic macular edema: a systematic review. Invest Ophthalmol Vis Sci 2007; 48: 4963-4973 doi:10.1167/iovs.06-1472
  • 91 Health Quality Ontario. Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis. Ont Health Technol Assess Ser 2009; 9: 1-22
  • 92 Das R, Spence G, Hogg RE. et al. Disorganization of inner retina and outer retinal morphology in diabetic macular edema. JAMA Ophthalmol 2018; 136: 202-208 doi:10.1001/jamaophthalmol.2017.6256
  • 93 Sheu SJ, Lee YY, Horng YH. et al. Characteristics of diabetic macular edema on optical coherence tomography may change over time or after treatment. Clin Ophthalmol 2018; 12: 1887-1893
  • 94 Bonfiglio V, Reibaldi M, Pizzo A. et al. Dexamethasone for unresponsive diabetic macular oedema: optical coherence tomography biomarkers. Acta Ophthalmol 2019; 97: e540-e544
  • 95 Sivaprasad S, Crosby-Nwaobi R, Heng LZ. et al. Injection frequency and response to bevacizumab monotherapy for diabetic macular oedema (BOLT Report 5). Br J Ophthalmol 2013; 97: 1177-1180
  • 96 Korobelnik JF, Lu C, Katz TA. et al. Effect of baseline subretinal fluid on treatment outcomes in VIVID-DME and VISTA-DME studies. Ophthalmol Retina 2019; 3: 663-669 doi:10.1016/j.oret.2019.03.015
  • 97 Tsai MJ, Hsieh YT, Shen EP. et al. Systemic associations with residual subretinal fluid after ranibizumab in diabetic macular edema. J Ophthalmol 2017; DOI: 10.1155/2017/4834201.
  • 98 Sonoda S, Sakamoto T, Shirasawa M. et al. Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema. Investig Ophthalmol Vis Sci 2013; 54: 5367-5374
  • 99 Zhu D, Zhu H, Wang C. et al. Intraocular soluble intracellular adhesion molecule-1 correlates with subretinal fluid height of diabetic macular edema. Indian J Ophthalmol 2014; 62: 295
  • 100 Guyon B, Elphege E, Flores M. et al. Retinal reflectivity measurement for cone impairment estimation and visual assessment after diabetic macular edema resolution (RECOVER-DME). Invest Ophthalmol Vis Sci 2017; 58: 6241-6247 doi:10.1167/iovs.17-22380
  • 101 Wanek J, Blair NP, Chau FY. et al. Alterations in retinal layer thickness and reflectance at different stages of diabetic retinopathy by en face optical coherence tomography. Invest Ophthalmol Vis Sci 2016; 57: OCT341-OCT347 doi:10.1167/iovs.15-18715
  • 102 Toprak I, Yildirim C, Yaylali V. Impaired photoreceptor inner segment ellipsoid layer reflectivity in mild diabetic retinopathy. Can J Ophthalmol 2015; 50: 438-441 doi:10.1016/j.jcjo.2015.07.009
  • 103 Scarinci F, Jampol LM, Linsenmeier RA. et al. Association of diabetic macular Nonperfusion with outer retinal disruption on optical coherence tomography. JAMA Ophthalmol 2015; 133: 1036-1044 doi:10.1001/jamaophthalmol.2015.2183
  • 104 Shen Y, Liu K, Xu X. Correlation between visual function and photoreceptor integrity in diabetic macular edema: spectral-domain optical coherence tomography. Curr Eye Res 2016; 41: 391-399 doi:10.3109/02713683.2015.1019003
  • 105 Wang JW, Jie CH, Tao YJ. et al. Macular integrity assessment to determine the association between macular microstructure and functional parameters in diabetic macular edema. Int J Ophthalmol 2018; 11: 1185-1191 doi:10.18240/ijo.2018.07.18
  • 106 Mori Y, Suzuma K, Uji A. et al. Restoration of foveal photoreceptors after intravitreal ranibizumab injections for diabetic macular edema. Sci Rep 2016; 6: 39161 doi:10.1038/srep39161
  • 107 Adhi M, Badaro E, Liu JJ. et al. Three-dimensional enhanced imaging of vitreoretinal interface in diabetic retinopathy using swept-source optical coherence tomography. Am J Ophthalmol 2016; 162: 140-149.e1 doi:10.1016/j.ajo.2015.10.025
  • 108 Khan AI, Mohamed MD, Mann SS. et al. Prevalence of vitreomacular interface abnormalities on spectral domain optical coherence tomography of patients undergoing macular photocoagulation for centre involving diabetic macular oedema. Br J Ophthalmol 2015; 99: 1078-1081 doi:10.1136/bjophthalmol-2014-305966
  • 109 Yannuzzi LA, Rohrer KT, Tindel LJ. et al. Fluorescein angiography complication survey. Ophthalmology 1986; 93: 611-617
  • 110 Ha SO, Kim DY, Sohn CH. et al. Anaphylaxis caused by intravenous fluorescein: clinical characteristics and review of literature. Intern Emerg Med 2014; 9: 325-330 doi:10.1007/s11739-013-1019-6
  • 111 Kwiterovich KA, Maguire MG, Murphy RP. et al. Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology 1991; 98: 1139-1142
  • 112 Almalki WH, Abdalla AN, Elkeraie AF. et al. Effect of fluorescein angiography on renal functions in type 2 diabetes patients: A pilot study. Saudi J Kidney Dis Transpl 2017; 28: 491-498 doi:10.4103/1319-2442.206444
  • 113 Kameda Y, Babazono T, Haruyama K. et al. Renal function following fluorescein angiography in diabetic patients with chronic kidney disease. Diabetes Care 2009; 32: e31 doi:10.2337/dc08-1692
  • 114 Lee JH, Chung B, Lee SC. et al. Lower incidence of contrast-induced nephropathy in patients undergoing fluorescent angiography. BMC Ophthalmol 2017; 17: 46 doi:10.1186/s12886-017-0440-4
  • 115 Hwang TS, Jia Y, Gao SS. et al. Optical coherence tomography angiography features of diabetic retinopathy. Retina 2015; 35: 2371-2376 doi:10.1097/IAE.0000000000000716
  • 116 Ishibazawa A, Nagaoka T, Takahashi A. et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 2015; 160: 35-44 doi:10.1016/j.ajo.2015.04.021
  • 117 Couturier A, Mane V, Bonnin S. et al. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina 2015; 35: 2384-2391 doi:10.1097/IAE.0000000000000859
  • 118 Spaide RF, Klancnik jr. JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 2015; 133: 45-50 doi:10.1001/jamaophthalmol.2014.3616
  • 119 Ting DSW, Tan GSW, Agrawal R. et al. Optical coherence tomographic angiography in type 2 diabetes and diabetic retinopathy. JAMA Ophthalmol 2017; 135: 306-312 doi:10.1001/jamaophthalmol.2016.5877
  • 120 Soares M, Neves C, Marques IP. et al. Comparison of diabetic retinopathy classification using fluorescein angiography and optical coherence tomography angiography. Br J Ophthalmol 2017; 101: 62-68 doi:10.1136/bjophthalmol-2016-309424
  • 121 Hwang TS, Gao SS, Liu L. et al. Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol 2016; 134: 367-373 doi:10.1001/jamaophthalmol.2015.5658
  • 122 Lang GE, Enders C, Loidl M. et al. Präzise Befundung mit der OCT-Angiografie–Artefakte erkennen und ausschließen. Klin Monatsbl Augenheilkd 2017; 234: 1109-1118
  • 123 Deutsche Ophthalmologische Gesellschaft; Berufsverband der Augenärzte Deutschlands e.V., Retinologische Gesellschaft e.V.. Stellungnahme des BVA, der DOG und der RG: OCT-Angiographie in Deutschland. Ophthalmologe 2017; 114: 432-438
  • 124 Stanga PE, Papayannis A, Tsamis E. et al. New findings in diabetic maculopathy and proliferative disease by swept-source optical coherence tomography angiography. Dev Ophthalmol 2016; 56: 113-121 doi:10.1159/000442802
  • 125 Tan TE, Nguyen Q, Chua J. et al. Global assessment of retinal arteriolar, venular and capillary microcirculations using fundus photographs and optical coherence tomography angiography in diabetic Retinopathy. Sci Rep 2019; 9: 11751 doi:10.1038/s41598-019-47770-9
  • 126 Sun Z, Tang F, Wong R. et al. OCT angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema: a prospective study. Ophthalmology 2019; DOI: 10.1016/j.ophtha.2019.06.016.
  • 127 Hsieh YT, Alam MN, Le D. et al. OCT angiography biomarkers for predicting visual outcomes after ranibizumab treatment for diabetic macular edema. Ophthalmol Retina 2019; DOI: 10.1016/j.oret.2019.04.027.
  • 128 Daruich A, Matet A, Moulin A. et al. Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res 2018; 63: 20-68
  • 129 Ziemssen F, Marahrens L, Roeck D. et al. Klinische Stadieneinteilung der diabetischen Retinopathie. Diabetologe 2018; 14: 550-556
  • 130 Browning DJ, Altaweel MM, Bressler NM. et al. Diabetic macular edema: what is focal and what is diffuse?. Am J Ophthalmol 2008; 146: 649-655
  • 131 Early Treatment Diabetic Retinopathy Study Research Group. Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema: Early Treatment Diabetic Retinopathy Study report number 2. Ophthalmology 1987; 94: 761-774
  • 132 Browning DJ, McOwen MD, Bowen jr. RM. Comparison of the clinical diagnosis of diabetic macular edema with diagnosis by optical coherence tomography. Ophthalmology 2004; 111: 712-715
  • 133 Wang H, Chhablani J, Freeman WR. et al. Characterization of diabetic microaneurysms by simultaneous fluorescein angiography and spectral-domain optical coherence tomography. Am J Ophthalmol 2012; 153: 861-867.e1
  • 134 Kozak I, El-Emam SY, Cheng L, Bartsch D-U. Fluorescein angiography versus optical coherence tomography-guided planning for macular laser photocoagulation in diabetic macular edema. Retina 2014; 34: 1600-1605
  • 135 Diabetic Retinopathy Clinical Research Network. Relationship between optical coherence tomography–measured central retinal thickness and visual acuity in diabetic macular edema. Ophthalmology 2007; 114: 525-536
  • 136 Early Treatment Diabetic Retinopathy Study Research Group. Early treatment diabetic retinopathy study report number 1; Photocoagulation for diabetic macular edema. Arch Ophthalmol 1985; 103: 1796-1806
  • 137 Johannesen SK, Viken JN, Vergmann AS. et al. Optical coherence tomography angiography and microvascular changes in diabetic retinopathy: a systematic review. Acta Ophthalmol 2019; 97: 7-14
  • 138 Hirano T, Kitahara J, Toriyama Y. et al. Quantifying vascular density and morphology using different swept-source optical coherence tomography angiographic scan patterns in diabetic retinopathy. Br J Ophthalmol 2019; 103: 216-221
  • 139 Sim DA, Keane PA, Zarranz-Ventura J. et al. The effects of macular ischemia on visual acuity in diabetic retinopathy. Investig Ophthalmol Vis Sci 2013; 54: 2353-2360
  • 140 Lee DH, Kim JT, Jung DW. The relationship between foveal ischemia and spectral-domain optical coherence tomography findings in ischemic diabetic macular edema. Investig Ophthalmol Vis Sci 2013; 54: 1080-1085
  • 141 Sim DA, Keane PA, Fung S. et al. Quantitative analysis of diabetic macular ischemia using optical coherence tomography. Investig Ophthalmol Vis Sci 2014; 55: 417-423
  • 142 Selvam S, Sim DA, Keane PA. et al. Patterns of peripheral retinal and central macula Ischemia in diabetic retinopathy as evaluated by ultra widefield fluorescein angiography. Investig Ophthalmol Vis Sci 2014; 55: 260
  • 143 Patel RD, Messner LV, Teitelbaum B. et al. Characterization of ischemic index using ultra-widefield fluorescein angiography in patients with focal and diffuse recalcitrant diabetic macular edema. Am J Ophthalmol 2013; 155: 1038-1044.e2
  • 144 Tsui I, Williams BK, Kok YO. et al. Reliability of ischemic index grading in common retinal vascular diseases. Ophthalmic Surg Lasers Imaging Retin 2015; 46: 618-625
  • 145 Brown DM, Ou WC, Wong TP. et al. Targeted retinal photocoagulation for diabetic macular edema with peripheral retinal nonperfusion: three-year randomized DAVE trial. Ophthalmology 2018; 125: 683-690
  • 146 Sophie R, Lu N, Campochiaro PA. Predictors of functional and anatomic outcomes in patients with diabetic macular edema treated with ranibizumab. Ophthalmology 2015; 122: 1395-1401
  • 147 Dhoot DS, Baker K, Saroj N. et al. Baseline factors affecting changes in diabetic retinopathy severity scale score after intravitreal aflibercept or laser for diabetic macular edema: post hoc analyses from VISTA and VIVID. Ophthalmology 2018; 125: 51-56
  • 148 Guyon B, Elphege E, Flores M, Gauthier A-S. Retinal Reflectivity measurement for cone impairment estimation and visual assessment after diabetic macular edema resolution (RECOVER-DME). Investig Ophthalmol Vis Sci 2017; 58: 6241-6247
  • 149 Ziemssen F, Roeck D, Marahrens L. et al. Bildgebung der diabetischen Retinopathie. Diabetologe 2018; 14: 557-567
  • 150 Baker CW, Glassman AR, Beaulieu WT. et al. Effect of initial management with aflibercept vs. laser photocoagulation vs. observation on vision loss among patients with diabetic macular edema involving the center of the macula and good visual acuity: a randomized clinical trial. JAMA 2019; 321: 1880-1894 doi:10.1001/jama.2019.5790
  • 151 Peto T, Chakravarthy U. New findings from diabetic retinopathy clinical research retina network protocol V confirm a role for focal laser photocoagulation or observation for eyes with center-involved diabetic macular edema and good visual acuity: new is not always best. JAMA Ophthalmol 2019; 137: 838-839 doi:10.1001/jamaophthalmol.2019.1876
  • 152 Payne JF, Wykoff CC, Clark WL. et al. Randomized trial of treat & extend ranibizumab with & without navigated laser versus monthly dosing for DME: TREX-DME 2 year outcomes. Am J Ophthalmol 2019; 124: 74-81 doi:10.1016/j.ophtha.2016.09.021
  • 153 Ansari WH, Han MM, Haq S. et al. Baseline ocular characteristics of patients undergoing initiation of anti-vascular endothelial growth factor therapy for diabetic macular edema. Ophthalmic Surg Lasers Imaging Retina 2019; 50: 69-75
  • 154 Ziemssen F, Feltgen N, Holz F. et al. Demographics of patients receiving Intravitreal anti-VEGF treatment in real-world practice: healthcare research data versus randomized controlled trials. BMC Ophthalmol 2017; 17: 7
  • 155 Haq S, Ansari WH, Han MM. et al. Characterization of the systemic findings of patients undergoing initiation of anti-vascular endothelial growth factor therapy for diabetic macular edema in routine clinical practice. Ophthalmic Surg Lasers Imaging Retina 2019; 50: 16-24
  • 156 Liew G, Wong VW, Saw M. et al. Profile of a population-based diabetic macular oedema study: the Liverpool Eye and Diabetes Study (Sydney). BMJ Open 2019; 9: e21884
  • 157 Do DV, Nguyen QD, Vitti R. et al. Intravitreal aflibercept injection in diabetic macular edema patients with and without prior anti-vascular endothelial growth factor treatment: outcomes from the phase 3 program. Ophthalmology 2016; 123: 850-857
  • 158 Rajendram R, Fraser-Bell S, Kaines A. et al. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3. Arch Ophthalmol 2012; 130: 972-979
  • 159 Schmidt-Erfurth U, Lang GE, Holz FG. et al. Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: the RESTORE extension study. Ophthalmology 2014; 121: 1045-1053
  • 160 Ziemssen F, Cruess A, Dunger-Baldauf C. et al. Ranibizumab in diabetic macular oedema–a benefit–risk analysis of ranibizumab 0.5 mg PRN versus laser treatment. Eur Endocrinol 2017; 13: 91
  • 161 Karst SG, Lammer J, Mitsch C. et al. Detailed analysis of retinal morphology in patients with diabetic macular edema (DME) randomized to ranibizumab or triamcinolone treatment. Graefes Arch Clin Exp Ophthalmol 2018; 256: 49-58
  • 162 Wei Q, Chen R, Lou Q. et al. Intravitreal corticosteroid implant vs. intravitreal ranibizumab for the treatment of macular edema: a meta-analysis of randomized controlled trials. Drug Des Dev Ther 2019; 13: 301
  • 163 Neto HO, Regatieri CV, Nobrega MJ. et al. Multicenter, randomized clinical trial to assess the effectiveness of Intravitreal injections of bevacizumab, triamcinolone, or their combination in the treatment of diabetic macular edema. Ophthalmic Surg Lasers Imaging Retina 2017; 48: 734-740
  • 164 Elman MJ, Ayala A, Bressler NM. et al. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: 5-year randomized trial results. Ophthalmology 2015; 122: 375-381
  • 165 Wordinger RJ, Clarka AF. Effects of glucocorticoids on the trabecular meshwork: towards a better understanding of glaucoma. Prog Retin Eye Res 1999; 18: 629-667
  • 166 Kiddee W, Trope GE, Sheng L. et al. Intraocular pressure monitoring post intravitreal steroids: a systematic review. Surv Ophthalmol 2013; 58: 291-310
  • 167 Goñi FJ, Stalmans I, Denis P, Nordmann J-P. Elevated intraocular pressure after intravitreal steroid injection in diabetic macular edema: monitoring and management. Ophthalmol Ther 2016; 5: 47-61
  • 168 Beer PM, Bakri SJ, Singh RJ. et al. Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection. Ophthalmology 2003; 110: 681-686
  • 169 Maturi RK, Pollack A, Uy HS. et al.Li X-Y. Intraocular pressure in patients with diabetic macular edema treated with dexamethasone intravitreal implant in the 3-year MEAD study. Retina 2016; 36: 1143-1152
  • 170 Campochiaro PA, Brown DM, Pearson A. et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology 2011; 118: 626-635.e2
  • 171 Bracha P, Moore NA, Ciulla TA. et al. The acute and chronic effects of intravitreal anti-vascular endothelial growth factor injections on intraocular pressure: a review. Surv Ophthalmol 2018; 63: 281-295
  • 172 Wen JC, Reina-Torres E, Sherwood JM. et al. Intravitreal anti-VEGF injections reduce aqueous outflow facility in patients with neovascular age-related macular degeneration. Investig Ophthalmol Vis Sci 2017; 58: 1893-1898
  • 173 Bressler SB, Almukhtar T, Bhorade A. et al. Repeated intravitreous ranibizumab injections for diabetic macular edema and the risk of sustained elevation of intraocular pressure or the need for ocular hypotensive treatment. JAMA Ophthalmol 2015; 133: 589-597
  • 174 Kim SV, Fajnkuchen F, Sarda V. et al. Sustained intraocular pressure elevation in eyes treated with intravitreal injections of anti-vascular endothelial growth factor for diabetic macular edema in a real-life setting. Graefes Arch Clin Exp Ophthalmol 2017; 255: 2165-2171
  • 175 Freund KB, Hoang QV, Saroj N. et al. Intraocular pressure in patients with neovascular age-related macular degeneration receiving intravitreal aflibercept or ranibizumab. Ophthalmology 2015; 122: 1802-1810
  • 176 Zhou Y, Zhou M, Xia S. et al. Sustained elevation of intraocular pressure associated with intravitreal administration of anti-vascular endothelial growth factor: a systematic review and meta-analysis. Sci Rep 2016; 6: 39301
  • 177 Elman MJ, Bressler NM, Qin H. et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 2011; 118: 609-614
  • 178 Superstein R. Indications for cataract surgery. Curr Opin Ophthalmol 2001; 12: 58-62
  • 179 Peterson SR, Silva PA, Murtha TJ. et al. Cataract surgery in patients with diabetes: management strategies. Seminars in Ophthalmology 2018; 33: 75-82
  • 180 Denniston AK, Chakravarthy U, Zhu H. et al. The UK Diabetic Retinopathy Electronic Medical Record (UK DR EMR) Users Group, Report 2: real-world data for the impact of cataract surgery on diabetic macular oedema. Br J Ophthalmol 2017; 101: 1673-1678
  • 181 VanderBeek BL, Bonaffini SG, Ma L. The association between intravitreal steroids and post-injection endophthalmitis rates. Ophthalmology 2015; 122: 2311-2315.e1
  • 182 Rayess N, Rahimy E, Storey P. et al. Postinjection endophthalmitis rates and characteristics following intravitreal bevacizumab, ranibizumab, and aflibercept. Am J Ophthalmol 2016; 165: 88-93
  • 183 Bhavsar AR, Googe JM, Stockdale CR. et al. Risk of endophthalmitis after intravitreal drug injection when topical antibiotics are not required: the diabetic retinopathy clinical research network laser-ranibizumab-triamcinolone clinical trials. Arch Ophthalmol 2009; 127: 1581-1583
  • 184 Campochiaro PA, Nguyen QD, Hafiz G. et al. Aqueous levels of fluocinolone acetonide after administration of fluocinolone acetonide inserts or fluocinolone acetonide implants. Ophthalmology 2013; 120: 583-587
  • 185 Chang-Lin J-E, Attar M, Acheampong AA. et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Investig Ophthalmol Vis Sci 2011; 52: 80-86
  • 186 Edington M, Connolly J, Chong NV. Pharmacokinetics of intravitreal anti-VEGF drugs in vitrectomized versus non-vitrectomized eyes. Expert Opin Drug Metab Toxicol 2017; 13: 1217-1224
  • 187 Stewart MW. Pharmacokinetics, pharmacodynamics and pre-clinical characteristics of ophthalmic drugs that bind VEGF. Expert Rev Clin Pharmacol 2014; 7: 167-180
  • 188 Pochopien M, Beiderbeck A, McEwan P. et al. Cost-effectiveness of fluocinolone acetonide implant (ILUVIEN®) in UK patients with chronic diabetic macular oedema considered insufficiently responsive to available therapies. BMC Health Serv Res 2019; 19: 22
  • 189 Fraser-Bell S, Lim LL, Campain A. et al. Bevacizumab or dexamethasone implants for DME: 2-year results (the BEVORDEX study). Ophthalmology 2016; 123: 1399-1401 doi:10.1016/j.ophtha.2015.12.012
  • 190 Ramu J, Yang Y, Menon G. et al. A randomized clinical trial comparing fixed vs. pro-re-nata dosing of Ozurdex in refractory diabetic macular oedema (OZDRY study). Eye 2015; 29: 1603
  • 191 Deonandan R, Jones S. Anti-vascular endothelial growth factor drugs for the treatment of retinal conditions: a review of the safety. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2017: PMID:28825785
  • 192 Thulliez M, Angoulvant D, Le Lez ML. et al. Cardiovascular events and bleeding risk associated with intravitreal antivascular endothelial growth factor monoclonal antibodies: systematic review and meta-analysis. JAMA Ophthalmol 2014; 132: 1317-1326
  • 193 Avery RL, Gordon GM. Systemic safety of prolonged monthly anti-vascular endothelial growth factor therapy for diabetic macular edema: a systematic review and meta-analysis. JAMA Ophthalmol 2016; 134: 21-29
  • 194 Avery RL, Castellarin AA, Steinle NC. et al. Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina 2017; 37: 1847
  • 195 Maloney MH, Schilz SR, Herrin J. et al. Risk of systemic adverse events associated with Intravitreal anti-VEGF therapy for diabetic macular edema in routine clinical practice. Ophthalmology 2018; DOI: 10.1016/j.ophtha.2018.09.040.
  • 196 Grover DA, Li T, Chong CC. Intravitreal steroids for macular edema in diabetes. Cochrane Database Syst Rev 2008; DOI: 10.1002/14651858.CD005656.pub2.
  • 197 Schatz H, Madeira D, McDonald HR. et al. Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema. Arch Ophthalmol 1991; 109: 1549-1551
  • 198 Pearce E, Sivaprasad S, Chong NV. Factors affecting reading speed in patients with diabetic macular edema treated with laser photocoagulation. Plos One 2014; 9: e105696
  • 199 Comyn O, Sivaprasad S, Peto T. et al. A randomized trial to assess functional and structural effects of ranibizumab versus laser in diabetic macular edema (the LUCIDATE study). Am J Ophthalmol 2014; 157: 960-970.e2
  • 200 Heier JS, Korobelnik JF, Brown DM. et al. Intravitreal aflibercept for diabetic macular edema: 148-week results from the VISTA and VIVID studies. Ophthalmology 2016; 123: 2376-2385 doi:10.1016/j.ophtha.2016.07.032
  • 201 Sivertsen MS, Jørstad ØK, Grevys A. et al. Pharmaceutical compounding of aflibercept in prefilled syringes does not affect structural integrity, stability or VEGF and Fc binding properties. Sci Rep 2018; 8: 2101
  • 202 de Lima FJ, Sano R, Maugéri IML. et al. Evaluation of aflibercept and ziv-aflibercept binding affinity to vascular endothelial growth factor, stability and sterility after compounding. Int J Retina Vitreous 2018; 4: 39
  • 203 Subhi Y, Kjer B, Munch IC. Prefilled syringes for intravitreal injection reduce preparation time. Dan Med J 2016; 63: A5214
  • 204 Mansour AM, Ashraf M, Charbaji A. et al. Two-year outcomes of intravitreal ziv-aflibercept. Br J Ophthalmol 2018; 102: 1387-1390
  • 205 Diabetic Retinopathy Clinical Research Network. Scott IU, Edwards AR, Beck RW. et al. A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology 2007; 114: 1860-1867
  • 206 Fortin P, Mintzes B, Innes M. A systematic review of intravitreal bevacizumab for the treatment of diabetic macular edema. CADTH Technol Overv 2013; 3: e3103
  • 207 Bressler SB, Liu D, Glassman AR. et al. Change in diabetic retinopathy through 2 years: secondary analysis of a randomized clinical trial comparing aflibercept, bevacizumab, and ranibizumab. JAMA Ophthalmol 2017; 135: 558-568 doi:10.1001/jamaophthalmol.2017.0821
  • 208 Holekamp NM, Campbell J, Almony A. et al. Vision outcomes following anti–vascular endothelial growth factor treatment of diabetic macular edema in clinical practice. Am J Ophthalmol 2018; 191: 83-91
  • 209 Ziemssen F, Wachtlin J, Kuehlewein L. et al. Intravitreal Ranibizumab therapy for diabetic macular edema in routine practice: two-year real-life data from a non-interventional, multicenter study in Germany. Diabetes Ther 2018; 9: 2271-2289
  • 210 Wilke RG, Finger RP, Sachs HG. Real-life data on the treatment of diabetic macular oedema in Germany. Klin Monatsbl Augenheilkd 2017; 234: 1502-1507
  • 211 Stefanickova J, Cunha-Vaz J, Ulbig M. et al. A noninterventional study to monitor patients with diabetic macular oedema starting treatment with ranibizumab (POLARIS). Acta Ophthalmol 2018; 96: e942-e949
  • 212 Ferris FL3rd Maguire MG, Glassman AR. et al. Evaluating effects of switching anti-vascular endothelial growth factor drugs for age-related macular degeneration and diabetic macular edema. JAMA Ophthalmol 2017; 135: 145-149 doi:10.1001/jamaophthalmol.2016.4820
  • 213 Banaee T, Ashraf M, Conti FF. et al. Switching anti-VEGF drugs in the treatment of diabetic macular edema. Ophthalmic Surg Lasers Imaging Retina 2017; 48: 748-754 doi:10.3928/23258160-20170829-10
  • 214 Ehlers JP, Wang K, Singh RP. et al. A prospective randomized comparative dosing trial of ranibizumab in bevacizumab-resistant diabetic macular edema: the REACT study. Ophthalmol Retina 2018; 2: 217-224
  • 215 Shah CP, Heier JS. Aflibercept for diabetic macular edema in eyes previously treated with ranibizumab and/or bevacizumab May further improve macular thickness. Ophthalmic Surg Lasers Imaging Retina 2016; 47: 836-839 doi:10.3928/23258160-20160901-06
  • 216 Bressler SB, Odia I, Maguire MG. et al. Factors associated with visual acuity and central Subfield thickness changes when treating diabetic macular edema with anti–vascular endothelial growth factor therapy: an exploratory analysis of the protocol T randomized clinical trial. JAMA Ophthalmol 2019; 137: 382-389
  • 217 Busch C, Zur D, Fraser-Bell S. et al. Shall we stay, or shall we switch? Continued anti-VEGF therapy versus early switch to dexamethasone implant in refractory diabetic macular edema. Acta Diabetol 2018; 55: 789-796 doi:10.1007/s00592-018-1151-x
  • 218 Hua W, Cao S, Cui J. et al. Analysis of reasons for noncompliance with laser treatment in patients of diabetic retinopathy. Can J Ophthalmol 2013; 48: 88-92
  • 219 Gale R, Scanlon PH, Evans M. et al. Action on diabetic macular oedema: achieving optimal patient management in treating visual impairment due to diabetic eye disease. Eye (Lond) 2017; 31 (S1): S1-S20
  • 220 Duan F, Liu Y, Chen X. et al. Influencing factors on compliance of timely visits among patients with proliferative diabetic retinopathy in southern China: a qualitative study. BMJ Open 2017; 7: e13578
  • 221 Degner LF, Kristjanson LJ, Bowman D. et al. Information needs and decisional preferences in women with breast cancer. JAMA 1997; 277: 1485-1492
  • 222 He Y, Ren XJ, Hu BJ. et al. A meta-analysis of the effect of a dexamethasone intravitreal implant versus intravitreal anti-vascular endothelial growth factor treatment for diabetic macular edema. BMC Ophthalmol 2018; 18: 121
  • 223 Wong TY, Sun J, Kawasaki R. et al. Guidelines on diabetic eye care: the international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology 2018; DOI: 10.1016/j.ophtha.2018.04.007.
  • 224 Moulin TA, Boakye EA, Wirth LS. et al. Yearly treatment patterns for patients with recently diagnosed diabetic macular edema. Ophthalmol Retina 2019; 3: 362-370
  • 225 Jandorf S, Krogh Nielsen M, Sorensen K. et al. Low health literacy levels in patients with chronic retinal disease. BMC Ophthalmol 2019; 19: 174 doi:10.1186/s12886-019-1191-1
  • 226 Juthani VV, Clearfield E, Chuck RS. Non-steroidal anti-inflammatory drugs versus corticosteroids for controlling inflammation after uncomplicated cataract surgery. Cochrane Database Syst Rev 2017; DOI: 10.1002/14651858.CD010516.pub2.
  • 227 Wielders LHP, Schouten J, Nuijts R. Prevention of macular edema after cataract surgery. Curr Opin Ophthalmol 2018; 29: 48-53 doi:10.1097/ICU.0000000000000436
  • 228 Wielders LH, Lambermont VA, Schouten JS. et al. Prevention of cystoid macular edema after cataract surgery in Nondiabetic and diabetic patients: a systematic review and meta-analysis. Am J Ophthalmol 2015; 160: 968-981e33 doi:10.1016/j.ajo.2015.07.032
  • 229 Wielders LHP, Schouten J, Winkens B. et al. Randomized controlled European multicenter trial on the prevention of cystoid macular edema after cataract surgery in diabetics: ESCRS PREMED Study Report 2. J Cataract Refract Surg 2018; 44: 836-847 doi:10.1016/j.jcrs.2018.05.015
  • 230 Gillies MC, Lim LL, Campain A. et al. A randomized clinical trial of intravitreal bevacizumab versus intravitreal dexamethasone for diabetic macular edema: the BEVORDEX study. Ophthalmology 2014; 121: 2473-2481
  • 231 Alimera Sciences Limited. Fachinformation Iluvien. BPhArm Zul.-Nr. 82809.00.00. Rote Liste Service GmbH; 2015
  • 232 Allergan Pharmaceuticals Ireland. Fachinformation Ozurdex. EU Zulassungsnummer EU/1/10/638/001. Rote Liste Service GmbH; 2016
  • 233 Shah SU, Harless A, Bleau L. et al. Prospective randomized subject-masked study of intravitreal bevacizumab monotherapy versus dexamethasone implant monotherapy in the treatment of persistent diabetic macular edema. Retina 2016; 36: 1986-1996
  • 234 Chan CK, Mohamed S, Shanmugam MP. et al. Decreasing efficacy of repeated intravitreal triamcinolone injections in diabetic macular oedema. Br J Ophthalmol 2006; 90: 1137-1141
  • 235 Early Treatment Diabetic Retinopathy Study Research Group. Focal photocoagulation treatment of diabetic macular edema. Relationship of treatment effect to fluorescein angiographic and other retinal characteristics at baseline. ETDRS report no. 19. Arch Ophthalmol 1995; 113: 1144-1155
  • 236 Diabetic Retinopathy Clinical Research Network. The course of response to focal/grid photocoagulation for diabetic macular edema. Retina 2009; 29: 1436-1443
  • 237 Palanker DV, Blumenkranz MS, Marmor MF. Fifty years of ophthalmic laser therapy. Arch Ophthalmol 2011; 129: 1613-1619
  • 238 Kang H, Su L, Zhang H. et al. Early histological alteration of the retina following photocoagulation treatment in diabetic retinopathy as measured by spectral domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2010; 248: 1705-1711
  • 239 Aiello LP, Edwards AR, Beck RW. et al. Factors associated with improvement and worsening of visual acuity 2 years after focal/grid photocoagulation for diabetic macular edema. Ophthalmology 2010; 117: 946-953
  • 240 The Early Treatment Diabetic Retinopathy Study Research Group. Techniques for scatter and local photocoagulation treatment of diabetic retinopathy: early Treatment Diabetic Retinopathy Study Report no. 3. Int Ophthalmol Clin 1987; 27: 254-264
  • 241 Wu Y, Ai P, Ai Z. et al. Subthreshold diode micropulse laser versus conventional laser photocoagulation monotherapy or combined with anti-VEGF therapy for diabetic macular edema: a Bayesian network meta-analysis. Biomed Pharmacother 2018; 97: 293-299
  • 242 Lavinsky D, Sramek C, Wang J. et al. Subvisible retinal laser therapy: titration algorithm and tissue response. Retina 2014; 34: 87-97
  • 243 Crosson JN, Mason L, Mason JO. The role of focal laser in the anti-vascular endothelial growth factor era. Ophthalmol Eye Dis 2017; 9: 1179172117738240
  • 244 Greenstein VC, Chen H, Hood DC. et al. Retinal function in diabetic macular edema after focal laser photocoagulation. Investig Ophthalmol Vis Sci 2000; 41: 3655-3664
  • 245 Talwar D, Sharma N, Pai A. et al. Contrast sensitivity following focal laser photocoagulation in clinically significant macular oedema due to diabetic retinopathy. Clin Exp Ophthalmol 2001; 29: 17-21
  • 246 Goudinho S, Jerry L, Jacob JM. Changes in visual acuity and contrast sensitivity following macular photocoagulation for clinically significant macular edema: Four month outcomes. Indian J Clin Exp Ophthalmol 2018; 4: 46-49
  • 247 Luttrull JK, Dorin G. Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabetic macular edema: a review. Curr Diabetes Rev 2012; 8: 274-284
  • 248 Hamada M, Ohkoshi K, Inagaki K. et al. Subthreshold photocoagulation using endpoint management in the PASCAL® system for diffuse diabetic macular edema. J Ophthalmol 2018; DOI: 10.1155/2018/7465794.
  • 249 Majcher C, Gurwood AS. A review of micropulse laser photocoagulation. Rev Optom 2011; 148: SS10
  • 250 Roider J, Liew SHM, Klatt C. et al. Selective retina therapy (SRT) for clinically significant diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 2010; 248: 1263-1272
  • 251 Vujosevic S, Martini F, Longhin E. et al. Subthreshold micropulse yellow laser versus subthreshold micropulse infrared laser in center-involving diabetic macular edema: morphologic and functional safety. Retina 2015; 35: 1594-1603 doi:10.1097/IAE.0000000000000521
  • 252 Chen G, Tzekov R, Li W. et al. Subthreshold micropulse diode laser versus conventional laser photocoagulation for diabetic macular edema: a meta-analysis of randomized controlled trials. Retina 2016; 36: 2059-2065
  • 253 Lavinsky D, Cardillo JA, Melo LA. et al. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema. Investig Ophthalmol Vis Sci 2011; 52: 4314-4323
  • 254 Herold TR, Langer J, Vounotrypidis E. et al. 3-year-data of combined navigated laser photocoagulation (Navilas) and intravitreal ranibizumab compared to ranibizumab monotherapy in DME patients. PLoS ONE 2018; 13: e202483 doi:10.1371/journal.pone.0202483
  • 255 Neubauer AS, Langer J, Liegl R. et al. Navigated macular laser decreases retreatment rate for diabetic macular edema: a comparison with conventional macular laser. Clin Ophthalmol 2013; 7: 121-128
  • 256 Kernt M, Cheuteu RE, Cserhati S. et al. Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (Navilas®). Clin Ophthalmol 2012; 6: 289
  • 257 Or C, Das R, Despotovic I. et al. COmbined multimodal analysis of Peripheral Retinal and mAcular circulation in Diabetic Retinopathy (COPRA Study). Ophthalmol Retina 2019; 3: 580-588
  • 258 Wykoff CC, Nittala MG, Zhou B. et al. Intravitreal aflibercept for retinal non-perfusion in proliferative diabetic retinopathy: outcomes from the RECOVERY randomized trial. Ophthalmol Retina 2019; 3: 1076-1086
  • 259 Couturier A, Rey PA, Erginay A. et al. Widefield OCT-angiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and edema treated with anti-vascular endothelial growth factor. Ophthalmology 2019; DOI: 10.1016/j.ophtha.2019.06.022.
  • 260 Elman MJ, Aiello LP, Beck RW. et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 2010; 117: 1064-1077.e35
  • 261 Prünte C, Fajnkuchen F, Mahmood S. et al. Ranibizumab 0.5 mg treat-and-extend regimen for diabetic macular oedema: the RETAIN study. Br J Ophthalmol 2016; 100: 787-795
  • 262 Berufsverband der Augenärzte Deutschlands e. V.; Deutsche Ophthalmologische Gesellschaft, Retinologische Gesellschaft e.V.. Quality assurance of optical coherence tomography for diagnostics of the fundus: positional statement of the BVA, DOG and RG. Ophthalmologe 2017; 114: 617-624
  • 263 National Institute for Health and Care Excellence (NICE). Aflibercept for treating diabetic macular oedema. 2018 Im Internet: https://www.nice.org.uk/guidance/ta346 Stand: 30.12.2019
  • 264 National Institute for Health and Care Excellence (NICE). Ranibizumab for treating diabetic macular oedema. 2015 Im Internet: http://www.nice.org.uk/guidance/ta274 Stand: 30.12.2019
  • 265 Lois N, Gardner E, Waugh N. et al. Diabetic macular oedema and diode subthreshold micropulse laser (DIAMONDS): study protocol for a randomised controlled trial. Trials 2019; 20: 122
  • 266 Ziemssen F, Schlottman PG, Lim JI. et al. Initiation of intravitreal aflibercept injection treatment in patients with diabetic macular edema: a review of VIVID-DME and VISTA-DME data. Int J Retina Vitreous 2016; 2: 16 doi:10.1186/s40942-016-0041-z
  • 267 Busch C, Zur D, Fraser-Bell S. et al. Shall we stay, or shall we switch? Continued anti-VEGF therapy versus early switch to dexamethasone implant in refractory diabetic macular edema. Acta Diabetol 2018; 55: 789-796
  • 268 Bressler NM, Odia I, Maguire M. et al. Association between change in visual acuity and change in central subfield thickness during treatment of diabetic macular edema in participants randomized to aflibercept, bevacizumab, or ranibizumab: a post hoc analysis of the protocol T randomized clinical trial. JAMA Ophthalmol 2019; DOI: 10.1001/jamaophthalmol.2019.1963.
  • 269 Gonzalez VH, Campbell J, Holekamp NM. et al. Early and long-term responses to anti–vascular endothelial growth factor therapy in diabetic macular edema: analysis of protocol I data. Am J Ophthalmol 2016; 172: 72-79
  • 270 Dugel PU, Campbell JH, Kiss S. et al. Association between early anatomic response to anti–vascular endothelial growth factor therapy and long-term outcome in diabetic macular edema: an independent analysis of protocol i study data. Retina 2019; 39: 88
  • 271 Bressler NM, Beaulieu WT, Maguire MG. et al. Early response to anti-vascular endothelial growth factor and two-year outcomes among eyes with diabetic macular edema in protocol T. Am J Ophthalmol 2018; 195: 93-100
  • 272 Sepah YJ, Sadiq MA, Boyer D. et al. Twenty-four–month outcomes of the ranibizumab for edema of the macula in diabetes–protocol 3 with high dose (READ-3) study. Ophthalmology 2016; 123: 2581-2587
  • 273 Wykoff CC, Elman MJ, Regillo CD. et al. Predictors of diabetic macular edema treatment frequency with ranibizumab during the open-label extension of the RIDE and RISE trials. Ophthalmology 2016; 123: 1716-1721
  • 274 Pearce I, Banerjee S, Burton BJ. et al. Ranibizumab 0.5 mg for diabetic macular edema with bimonthly monitoring after a phase of initial treatment: 18-month, multicenter, phase IIIB RELIGHT study. Ophthalmology 2015; 122: 1811-1819
  • 275 Schwarzer P, Ebneter A, Munk M. et al. One-year results of using a treat-and-extend regimen without a loading phase with anti-VEGF agents in patients with treatment-naive diabetic macular edema. Ophthalmologica 2019; DOI: 10.1159/000495623.
  • 276 Waser K, Podkowinski D, Pretzl J. et al. Morphological retinal characteristics of patients with low vision due to diabetic macular edema. Ophthalmologe 2018; DOI: 10.1007/s00347-018-0759-0.
  • 277 Ehlers JP, Uchida A, Hu M. et al. Higher order assessment of OCT in diabetic macular edema from the VISTA study: ellipsoid zone dynamics and the retinal fluid index. Ophthalmol Retina 2019; DOI: 10.1016/j.oret.2019.06.010.
  • 278 Vié A-L, Kodjikian L, Agard E. et al. Evaluation of obstructive sleep apnea syndrome as A risk factor for diabetic macular edema in patients with type ii diabetes. Retina 2019; 39: 274-280
  • 279 Kramer CK, Rodrigues TC, Canani LH. et al. Diabetic retinopathy predicts all-cause mortality and cardiovascular events in both type 1 and 2 diabetes: meta-analysis of observational studies. Diabetes Care 2011; 34: 1238-1244
  • 280 Pearce I, Simo R, Lovestam-Adrian M. et al. Association between diabetic eye disease and other complications of diabetes: Implications for care. A systematic review. Diabetes Obes Metab 2019; 21: 467-478 doi:10.1111/dom.13550
  • 281 Kramer CK, Retnakaran R. Concordance of retinopathy and nephropathy over time in Type 1 diabetes: an analysis of data from the Diabetes Control and Complications Trial. Diabet Med 2013; 30: 1333-1341 doi:10.1111/dme.12296
  • 282 Girach A, Vignati L. Diabetic microvascular complications – can the presence of one predict the development of another?. J Diabetes Complicat 2006; 20: 228-237 doi:10.1016/j.jdiacomp.2006.03.001
  • 283 Zhang J, Wang Y, Li L. et al. Diabetic retinopathy may predict the renal outcomes of patients with diabetic nephropathy. Ren Fail 2018; 40: 243-251 doi:10.1080/0886022X.2018.1456453
  • 284 Lee WJ, Sobrin L, Kang MH. et al. Ischemic diabetic retinopathy as a possible prognostic factor for chronic kidney disease progression. Eye 2014; 28: 1119-1125 doi:10.1038/eye.2014.130
  • 285 Park HC, Lee YK, Cho A. et al. Diabetic retinopathy is a prognostic factor for progression of chronic kidney disease in the patients with type 2 diabetes mellitus. PLoS ONE 2019; 14: e220506 doi:10.1371/journal.pone.0220506
  • 286 Motta AAL, Bonanomi M, Ferraz DA. et al. Short-term effects of intravitreal bevacizumab in contrast sensitivity of patients with diabetic macular edema and optimizing glycemic control. Diabetes Res Clin Pract 2019; 149: 170-178 doi:10.1016/j.diabres.2019.02.002
  • 287 Wang YX, Wei WB, Xu L. et al. Physical activity and eye diseases. The Beijing Eye Study. Acta Ophthalmol 2018; DOI: 10.1111/aos.13962.
  • 288 Sayin N, Kara N, Pekel G. Ocular complications of diabetes mellitus. World J Diabetes 2015; 6: 92-108 doi:10.4239/wjd.v6.i1.92
  • 289 Sun JK, Glassman AR, Beaulieu WT. et al. Rationale and application of the protocol S anti-vascular endothelial growth factor algorithm for proliferative diabetic retinopathy. Ophthalmology 2019; 126: 87-95 doi:10.1016/j.ophtha.2018.08.001
  • 290 Preti RC, Ramirez LM, Monteiro ML. et al. Contrast sensitivity evaluation in high risk proliferative diabetic retinopathy treated with panretinal photocoagulation associated or not with intravitreal bevacizumab injections: a randomised clinical trial. Br J Ophthalmol 2013; 97: 885-889 doi:10.1136/bjophthalmol-2012-302675