Rofo 2019; 191(11): 1015-1025
DOI: 10.1055/a-0881-3113
Quality/Quality Assurance
© Georg Thieme Verlag KG Stuttgart · New York

Optimization of Whole-Body CT Examinations of Polytrauma Patients in Comparison with the Current Diagnostic Reference Levels

Article in several languages: English | deutsch
Stefan B. Schäfer
1   Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Justus-Liebig-University Giessen, Germany
,
Claudia Rudolph
2   Department of Pediatric Radiology, University-Hospital Giessen, Justus-Liebig-University Giessen, Germany
,
Martin Kolodziej
3   Product Management, Infinitt Europe GmbH, Frankfurt, Germany
,
Frank Mauermann
4   Clinical Application Specialist, Siemens Healthcare GmbH, Erlangen, Germany
,
Fritz Christian Roller
1   Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Justus-Liebig-University Giessen, Germany
,
Gabriele Anja Krombach
1   Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Justus-Liebig-University Giessen, Germany
› Author Affiliations
Further Information

Publication History

13 November 2017

22 February 2019

Publication Date:
18 April 2019 (online)

Abstract

Purpose Evaluation of the dose values of a polytrauma whole-body CT examination used in clinical practice with regard to the 2016 updated diagnostic reference levels and reduction of the mean exposure levels using simple optimization steps.

Materials and Methods In each case, 100 exposure values before and after dose optimization were compared with the old and new diagnostic reference levels. The grayscale values and the signal-to-noise ratio (SNR) were determined for the lung, the aortic arch and the liver. A visual assessment of the image quality was performed by two radiologists on the basis of a Likert scale (0 – non-diagnostic, 1 – poor visualization, 2 – moderate visualization, 3 – good visualization, 4 – excellent visualization) for CT examinations both before and after optimization.

Results The acquired exposure values after dose optimization were below the old and new diagnostic reference levels (1319.98 ± 463.16 mGy · cm) while the mean value of the exposure values before optimization (1774.96 ± 608.78 mGy · cm) exceeded the current diagnostic reference levels. The measured grayscale values (HU) were (before versus after optimization): lung – 833 HU vs. – 827 HU (p = 0.43), aortic arch 341 HU vs. 343 HU (p = 0.70) and liver 68 HU vs. 67 HU (p = 0.35). After dose optimization the SNR in the lung was minimally higher, while it was minimally lower in the two other regions than before the optimization. Visual assessment of the image quality showed almost identical values with 3.85 evaluation points before and 3.82 evaluation points after dose optimization (p = 0.57).

Conclusion Due to the updating of the diagnostic reference levels, an analysis of the own exposure values is necessary in order to be able to detect high values promptly and to initiate appropriate measures for dose reduction. Appropriate adaptation of the examination parameters with consideration of the necessary image quality allows a significant reduction of the radiation exposure in most cases, also on CT devices of older generations.

Key Points:

  • In many cases a dose reduction below the DRLs is already possible by optimizing the examination technique.

  • In order to ensure a diagnostic image quality, the control of the image quality is unavoidable in a dose reduction.

  • Through suitable parameter adjustments a compliance with the DRLs is also possible, using CT devices of older generation without iterative image reconstruction.

Citation Format

  • Schäfer SB, Rudolph C, Kolodziej M et al. Optimization of Whole-Body CT Examinations of Polytrauma Patients in Comparison with the Current Diagnostic Reference Levels. Fortschr Röntgenstr 2019; 191: 1015 – 1025

 
  • Literatur

  • 1 Internationale Strahlenschutzkommission. Strahlenschutz und Sicherheit in der Medizin; ICRP-Veröffentlichung 73; BfS-SCHR-1999; Wirtschaftsverlag/Verlag für neue Wissenschaft. Bremerhaven: 1999
  • 2 Europäische Atomgemeinschaft. Richtlinie 97/43/EURATOM des Rates vom 30. Juni 1997 über den Gesundheitsschutz von Personen gegen die Gefahren ionisierender Strahlung bei medizinischer Exposition und zur Aufhebung der Richtlinie 84/466/EURATOM, ABl. L Nr. 180 S. 22.
  • 3 European Commission. Radiation Protection 109, Guidance on diagnostic reference levels (DRLs) for medical exposures. Luxembourg: Office for Official Publications of the European Communities; 1999
  • 4 Verordnung über den Schutz vor Schäden durch Röntgenstrahlen (Röntgenverordnung -RöV) vom 8. Januar 1987 (BGBl. I S. 114) in der Fassung der Bekanntmachung vom 30. April 2003 (BGBl. I S 604).
  • 5 Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Referat Bundesaufsicht im Strahlenschutz, Qualitätssicherung durch ärztliche und zahnärztliche Stellen, Richtlinie zur Röntgenverordnung und zur Strahlenschutzverordnung, Az. RS II 4–11432/6 vom 23. Juni 2015.
  • 6 Bundesamt für Strahlenschutz. Bekanntmachung der aktualisierten diagnostischen Referenzwerte für diagnostische und interventionelle Röntgenanwendungen, 22. Juni 2016 (BAnz AT 15.07.2016 B8).
  • 7 Bundesamt für Strahlenschutz. Bekanntmachung der aktualisierten diagnostischen Referenzwerte für diagnostische und interventionelle Röntgenanwendungen, 22. Juni 2010, (BAnz. S. 2594).
  • 8 Veit R, Guggenberger R, Nosske D. et al. Diagnostische Referenzwerte für Röntgenuntersuchungen, Aktualisierung 2010. Radiologe 2010; 50: 907-912
  • 9 Roller F, Litzlbauer HD, Krombach GA. et al. Split-Bolus-Technik in der Computertomografie polytraumatisierter Patienten: Kontrastierung und diagnostische Sicherheit. Fortschr Röntgenstr 2013; 185: VO315_3 . doi:10.1055/s-0033-1346440
  • 10 Kalra MK, Woisetschlager M, Dahlstrom N. et al. Radiation dose reduction with Sinogram Affirmed Iterative Reconstruction technique for abdominal computed tomography. Journal of computer assisted tomography 2012; 36: 339-346
  • 11 Schindera ST, Odedra D, Raza SA. et al. Iterative reconstruction algorithm for CT: can radiation dose be decreased while lowcontrast detectability is preserved?. Radiology 2013; 269: 511-518
  • 12 Bundesärztekammer. Leitlinien der Bundesärztekammer zur Qualitätssicherung in Röntgendiagnostik bzw. Computertomografie. Dtsch Arztebl 2008; 105: A-536/B-480/C-468
  • 13 WHO. Obesity. Preventing and managing a global epidemic. Report of a WHO Consultation. WHO Technical Report Series. Geneva: WHO; 2000 894.
  • 14 Bushberg JT. The essential physics of medical imaging. 3rd. ed Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012: 1030
  • 15 Mohrs OK, Pettersen SE, Schulze T. High-resolution 3D unenhanced ECG-gated respiratory-navigates MR angiographie of renal arteries: comparison with contrast-enhanced MR angiographie. Am J Roentgenol 2010; 195.6: 1423-1428
  • 16 Körner M. Initial clinical results with a new needle screen storage phosphor system in chest radiograms. Fortschr Röntgenstr Stuttgart-New York: © Georg Thieme Verlag KG; 2005 Vol. 177. No. 11
  • 17 Bulla S, Pache G, Blanke P. et al. Strahlendosisreduktion in der Niedrigdosis-CT der Nasennebenhöhlen unter Anwendung der iterativen Bildrekonsturktion: Durchführbarkeit und Bildqualität. Fortschr Röntgenstr 2011 183 – VO409_1.
  • 18 Reske SU, Braunschweig R, Reske AW. et al. Polytrauma-Ganzkörper-CT: Klinisch adaptierter Einsatz unterschiedlich gewichteter CT-Untersuchungsprotokolle. Fortschr Röntgenstr 2018; 190: 1141-1151
  • 19 Geyer LL, Körner M, Harrieder A. et al. Dose reduction in 64-row whole-body CT in multiple trauma: an optimized CT protocol with iterative image reconstruction on a gemstone-based scintillator. Br J Radiol 2016; 89: 20160003
  • 20 Cornier MA, Després JP, Davis N. American Heart Association Obesity Committee of the Council on Nutrition; Physical Activity and Metabolism; Council on Arteriosclerosis; Thrombosis and Vascular Biology; Council on Cardiovascular Disease in the Young; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing, Council on Epidemiology and Prevention; Council on the Kidney in Cardiovascular Disease, and Stroke Council. Assessing adiposity. et al. A scientific statement from the American Heart Association. Circulation 2011; 124: 1996-2019
  • 21 Wu Q, Wang Y, Kai H. et al. Application of 80-kVp tube voltage, low-concentration contrast agent and iterative reconstruction in coronary CT angiography: evaluation of image quality and radiation dose. Int J Clin Pract 2016; 70 (Suppl. 09) B50-B55 . doi: 10.1111/ijcp.12852
  • 22 Zhang J, He B, Wang YL. et al. Application of 270 mgI/mL Iodinated Contrast Media in Dual-Source Computed Tomography Coronary Artery Imaging. Acta Cardiol Sin 2014; 30: 538-545