Planta Med 2007; 73(7): 655-661
DOI: 10.1055/s-2007-981527
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

A Novel Polyacetylene Significantly Inhibits Angiogenesis and Promotes Apoptosis in Human Endothelial Cells through Activation of the CDK Inhibitors and Caspase-7

Li-Wha Wu1 , 2 , Yi-Ming Chiang3 , Hsiao-Ching Chuang1 [*] , Chiu-Ping Lo3 [*] , Kai-Ying Yang4 , Sheng-Yang Wang5 , Lie-Fen Shyur3
  • 1Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
  • 2Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan, ROC
  • 3Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC
  • 4Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
  • 5Department of Forestry, National Chung-Hsing University, Taichung, Taiwan, ROC
Weitere Informationen

Publikationsverlauf

Received: November 14, 2006 Revised: April 23, 2007

Accepted: April 23, 2007

Publikationsdatum:
11. Juni 2007 (online)

Abstract

A novel bioactive polyacetylene compound, 1,2-dihydroxy-5(E)-tridecene-7,9,11-triyne (compound 1), was identified from the Bidens pilosa extract using an ex vivo primary human umbilical vein endothelium cell (HUVEC) bioassay-guided fractionation protocol. Our results demonstrate that compound 1 (at 2.5 μg/mL) possessed significant anti-angiogenic effects, as manifested by an inhibition of HUVEC proliferation, migration, and the formation of tube-like structures in collagen gel. Moreover, compound 1 induced HUVECs to undergo cell death in a concentration- and time-dependent manner. The mechanisms underlying these pharmacological effects include reduced expression of cell cycle mediators such as CDK4, cyclins D1 and A, retinoblastoma (Rb) and vascular endothelial growth factor receptor 1 (VEGFR-1), and promotion of caspase-mediated activation of CDK inhibitors p21(Cip1) and p27(Kip). Moreover, apoptotic induction in HUVECs mediated by compound 1 was found to be in part through overexpression of FasL protein, down-regulation of anti-apoptotic Bcl-2, and activation of caspase-7 and poly(ADP-ribose) polymerase. This study demonstrates the potent anti-angiogenic and apoptotic activities of compound 1, suggesting that phytocompounds such as polyacetylenes deserve more attention regarding their potential as candidates for anti-angiogenic therapeutics.

References

  • 1 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease.  Nat Med. 1995;  1 27-31.
  • 2 Folkman J, Shing Y. Angiogenesis.  J Biol Chem. 1992;  267 10 931-4.
  • 3 Boehm T, Folkman J, Browder T, O'Reilly M S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance.  Nature. 1997;  390 404-7.
  • 4 Chang S L, Chang C L, Chiang Y M, Hsieh R H, Tzeng C R, Wu T K. et al . Polyacetylenic compounds and butanol fraction from Bidens pilosa can modulate the differentiation of helper T cells and prevent autoimmune diabetes in non-obese diabetic mice.  Planta Med. 2004;  70 1045-51.
  • 5 Chang J S, Chiang L C, Chen C C, Liu L T, Wang K C, Lin C C. Antileukemic activity of Bidens pilosa L. var. minor (Blume) Sherff and Houttuynia cordata Thunb.  Am J Chin Med. 2001;  29 303-12.
  • 6 Rojas J J, Ochoa V J, Ocampo S A, Munoz J F. Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: a possible alternative in the treatment of non-nosocomial infections.  BMC Complement Altern Med. 2006;  6 2.
  • 7 Ubillas R P, Mendez C D, Jolad S D, Luo J, King S R, Carlson T J. et al . Antihyperglycemic acetylenic glucosides from Bidens pilosa .  Planta Med. 2000;  66 82-3.
  • 8 Chiang Y M, Chuang D Y, Wang S Y, Kuo Y H, Tsai P W, Shyur L F. Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa .  J Ethnopharmacol. 2004;  95 409-19.
  • 9 Wu L W, Chiang Y M, Chuang H C, Wang S Y, Yang G W, Chen Y H. et al . Polyacetylenes function as anti-angiogenic agents.  Pharm Res. 2004;  21 2112-9.
  • 10 Chiang Y M, Lo C P, Chen Y P, Wang S Y, Yang N S, Kuo Y H. et al . Ethyl caffeate suppresses NF-κB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin.  Br J Pharmacol. 2005;  146 352-63.
  • 11 Jaffe E A, Nachman R L, Becker C G, Minick C R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria.  J Clin Invest. 1973;  52 2745-56.
  • 12 Boukamp P, Petrussevska R T, Breitkreutz D, Hornung J, Markham A, Fusenig N E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line.  J Cell Biol. 1988;  106 761-71.
  • 13 Yang S, Graham J, Kahn J W, Schwartz E A, Gerritsen M E. Functional roles for PECAM-1 (CD31) and VE-cadherin (CD144) in tube assembly and lumen formation in three-dimensional collagen gels.  Am J Pathol. 1999;  155 887-95.
  • 14 Montesano R, Orci L, Vassalli P. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices.  J Cell Biol. 1983;  97 1648-52.
  • 15 Rucker G, Kehrbaum S, Sakulas H, Lawong B, Goeltenboth F. Acetylenic glucosides from Microglossa pyrifolia .  Planta Med. 1992;  58 266-9.
  • 16 Lin C M, Chang H, Chen T H, Wu I H, Chiu J H. Wogonin inhibits IL-6-induced angiogenesis via down-regulation of VEGF and VEGFR-1, not VEGFR-2.  Planta Med. 2006;  72 1305-10.
  • 17 Sherr C J, Roberts J M. Inhibitors of mammalian G1 cyclin-dependent kinases.  Genes Dev. 1995;  9 1149-63.
  • 18 Matsushime H, Quelle D E, Shurtleff S A, Shibuya M, Sherr C J, Kato J Y. D-type cyclin-dependent kinase activity in mammalian cells.  Mol Cell Biol. 1994;  14 2066-76.
  • 19 Resnitzky D, Gossen M, Bujard H, Reed S I. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system.  Mol Cell Biol. 1994;  14 1669-79.
  • 20 Levkau B, Koyama H, Raines E W, Clurman B E, Herren B, Orth K. et al . Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade.  Mol Cell. 1998;  1 553-63.
  • 21 Polyak K, Kato J Y, Solomon M J, Sherr C J, Massague J, Roberts J M. et al . p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest.  Genes Dev. 1994;  8 9-22.
  • 22 Matsuoka S, Edwards M C, Bai C, Parker S, Zhang P, Baldini A. et al . p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene.  Genes Dev. 1995;  9 650-62.

1 These authors contributed equally to this article.

Lie-Fen Shyur, Ph.D.

Agricultural Biotechnology Research Center

Academia Sinica

Taipei

Taiwan

Republic of China

Telefon: +886-2-2651-5028

eMail: lfshyur@ccvax.sinica.edu.tw

>