Synthesis 2002(8): 1017-1026
DOI: 10.1055/s-2002-31948
PAPER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of a Peptidomimetic HCMV Protease Inhibitor Library

Ping Xu*, Wenwei Lin, Xiaomin Zou
Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100083, P. R. China
Fax: +86(010)62015584; e-Mail: pingxuzh@public.bta.net.cn ; e-Mail: pingxu@bjmu.edu.cn;
Further Information

Publication History

Received 31 January 2002
Publication Date:
03 June 2002 (online)

Abstract

The human cytomegalovirus (HCMV) protease catalyzes the maturational process of the herpes virus assembly protein and plays a key role during the manufacture of viral capsid, and so is an attractive target for potential anti-herpes-virus agents with novel structures and new mechanisms. In this work, a peptidomimetic skeleton was designed and a chemical library containing 32 compounds with different substitutions on the skeleton was prepared by the oxidation of a precursor library, which was constructed from four types of building blocks: 4 carboxylic acids, 2 amines, 2 aldehydes and 2 isocyanides, based on multicomponent condensation following liquid phase strategies. The syntheses of the key building block isocyanides are presented.

    References

  • 1 Gold E. Nankervis GA. In Viral Infections of Humans: Epidemiology and Control   2nd Edition:  Evans AS. Plenum; New York: 1982.  p.167 
  • 2 Waxman L. Darke PL. Antivir. Chem. Chemother.  2000,  11:  1 
  • 3a Tong L. Qian CG. Massariol M.-J. Bonneau PR. Cordingley MG. Lagace L. Nature (London)  1996,  383:  272 
  • 3b Qiu X. Culp JS. DiLella AG. Hellmig B. Hoog SS. Janson CA. Smith WW. Abdel-Meguid SS. Nature (London)  1996,  383:  275 
  • 3c Shieh H.-S. Kurumball RG. Stevens AM. Stegeman RA. Sturman EJ. Pak JY. Wittwer AJ. Palmier MO. Wiegand RC. Holwerda BC. Stallings WC. Nature (London)  1996,  383:  279 
  • 3d Chen P. Tsuge H. Almassy RJ. Gribskov CL. Katoh S. Vanderpool PL. Margosiak SA. Pinco C. Matthews DA. Kan C.-C. Cell  1996,  86:  835 
  • 4 Ogilvie W. Bailey M. Poupart M.-A. Abraham A. Bhavsar A. Bonneau P. Bordeleau J. Bousquet Y. Chabot C. Guse I. Halmos T. Lavallee P. Leach M. Malenfant E. O’Meara J. Plante R. Plouffe C. Poirier M. Soucy F. Yoakim C. Deziel R. J. Med. Chem.  1997,  40:  4113 
  • 5 Tong L. Qian CG. Massariol M.-J. Deziel R. Yoakim C. Lagace L. Nat. Struct. Biol.  1998,  5:  819 
  • 6 Nakamura M. Inoue J. Yamada T. Bioorg. Med. Chem. Lett.  2000,  10:  2807 
  • 7 Tan W.-H. Zhang S.-Q. Zhang S.-Y. Feng R. Youji Huaxue  1994,  14:  181 
  • 8 Kelly TR. Schmidt TE. Haggerty JG. Synthesis  1972,  544 
  • 9 Yamawaki J. Kawate T. Ando T. Hanafusa T. Bull. Chem. Soc. Jpn.  1983,  56:  1885 
  • 10 Brown CA. Ahuja VK. J. Org. Chem.  1973,  38:  2226 
  • 11 Deutsch J. Niclas HJ. Synth. Commun.  1993,  23:  1561 
  • 12 Ugi I. Fetzer U. Eholzer U. Knupfer H. Offermann K. Angew. Chem. Int. Ed. Engl.  1965,  4:  472 
  • 13 Dess DB. Martin JC. J. Org. Chem.  1983,  48:  4155 
  • 14 Frigerio M. Santagostino M. Sputore S. J. Org. Chem.  1999,  64:  4537