Synthesis 2024; 56(02): 293-298
DOI: 10.1055/s-0043-1763603
paper

Total Synthesis of the Pyrrole Alkaloids Strychnuxinal and Strychnuxin

Neechi F. Okwor
,
Priyansh D. Gujarati
,
Funding for this project was provided by Organic Syntheses through a Research Grant for Faculty at Principally Undergraduate Institutions, by the Fisher College of Science and Mathematics (Towson University) through an undergraduate research grant, and by the Office of Undergraduate Research & Creative Inquiry (Towson University) through a Research Impact Award. This work was supported by instrumentation provided through the National Science Foundation under Grant Nos. 0923051 and 1531562.


Abstract

The first asymmetric total syntheses of the fused-pyrrole alkaloids strychnuxinal and strychnuxin have been achieved in 6 and 7 steps, respectively, starting from commercially available (±)-4-chlorostyrene oxide. Key steps in the synthetic route include a regioselective epoxide opening, a reductive etherification sequence to form the central 1,4-oxazine ring, and a late-stage phenol synthesis using a mild palladium-catalyzed coupling reaction. Notably, the optimized synthetic sequence presented avoids the use of traditional protecting groups. Total synthesis of these two structurally related natural products confirmed both their constitution (via NMR and X-ray crystallography) and their absolute configuration (via optical rotation).

Supporting Information



Publication History

Received: 08 September 2023

Accepted after revision: 13 October 2023

Article published online:
07 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 New address: Priyansh D. Gujarati, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
    • 2a Pandiyan R, Kannan V, Latha S, Selvamani P. Phytochemical and Pharmacological Profile of Plants Belonging to Strychnos Genus: A Review. In Bioactive Phytochemicals: Perspectives for Modern Medicine, Vol. 1. Gupta VK. Daya Publishing House; New Delhi: 2012: 275-327
    • 2b He W, Wang P, Chen J, Xie W. Org. Biomol. Chem. 2020; 18: 1046
    • 2c Nicoletti M, Goulart M, de Lima R, Goulart A, Delle Monache F, Bettolo G. J. Nat. Prod. 1984; 47: 953
    • 2d Pinheiro M, Imbiriba da Rocha A, Fernandes M, Monte F, Villar J, Cruz E. Quim. Nova 2004; 27: 188
    • 2e Yadav K, Kadam P, Patel J, Patil M. Pharmacogn. Rev. 2014; 8: 61
    • 2f Behera M, Mohanty T, Paramanik K. J. Pharmacogn. Phytochem. 2017; 6: 1207
  • 3 Sichaem J, Tip-pyang S, Lugsanangarm K, Do Thi My L. Nat. Prod. Commun. 2018; 13: 533
  • 4 Sichaem J, Ingkaninan K, Tip-pyang S. Nat. Prod. Res. 2017; 31: 149
  • 5 Somewhat confusingly, the name strychnuxin has also been assigned to a non-glucosidic iridoid natural product isolated from Strychnos nux-blanda; for details, see: Sichaem J, Khumkratok S, Siripong P, Tip-pyang S. Nat. Prod. Commun. 2016; 11: 709
    • 6a Yang Y, Cheng M, Teng C, Chang Y, Tsai I, Chen I. Phytochemistry 2002; 61: 567
    • 6b Choi J, Ozawa N, Yamakawa Y, Nagai K, Hirai H, Kawagishi H. Tetrahedron 2011; 67: 6649
    • 6c Zou G, Mansur S, Hu S, Aisa H, Shakhidoyatov K. Chem. Nat. Compd. 2012; 48: 635
  • 7 Han L, Gao C, Jiang Y, Guan P, Liu J, Li L, Xu L, Huang X. J. Nat. Prod. 2014; 77: 2605
    • 8a Kim SB, Chang B, Hwang B, Kim SY, Lee M. Bioorg. Med. Chem. Lett. 2014; 24: 5656
    • 8b Jerić I, Šimičić L, Stipetić M, Horvat Š. Glycoconj. J. 2000; 17: 273
    • 8c Xiong J, Huang Y, Wu X, Liu X, Fan H, Wang W, Zhao Y, Yang G, Zhang H, Hu J. Helv. Chim. Acta 2016; 99: 83
  • 9 Cao Z, Li Y, Wang S, Tang B, Guo X, Wang L, Zhao W. Tetrahedron Lett. 2016; 57: 2219
    • 10a Fatahala S, Hasabelnaby S, Goudah A, Mahmoud G, Hameed R. Molecules 2017; 22: 461
    • 10b Mohamed M, Fathallah S. Mini-Rev. Org. Chem. 2014; 11: 477
    • 10c Fatahala S, Mohamed M, Sabry J, Mansour Y. Med. Chem. 2022; 18: 1013
    • 10d Pramanik C, Barik P, Ali S, Nayak D, Ikbal M, Mandal A, Jana R, Giri S, Samanta S. New J. Chem. 2023; 47: 6476
  • 11 D’Ambrosio M, Guerriero A, Debitus C, Ribes O, Pusset J, Leroy S, Pietra F. J. Chem. Soc., Chem. Commun. 1993; 1305
  • 12 Buckley M, Brogden R. Drugs 1990; 1: 86
  • 13 Tong X, Zhou L, Wang Y, Xia C, Wang Y, Liang M, Hou F, Cheng Y. Org. Lett. 2010; 12: 1844
    • 14a Schaus S, Brandes B, Larrow J, Tokunaga M, Hansen K, Gould A, Furrow M, Jacobsen E. J. Am. Chem. Soc. 2002; 124: 1307
    • 14b See the Supporting Information file accompanying this manuscript for synthetic details and the determination of this compound’s enantiomeric purity.
  • 15 Bélanger P, Atkinson J, Rooney C. J. Org. Chem. 1983; 48: 3234
  • 16 Cao P, Li Z, Sun W, Malhotra S, Ma Y, Wu B, Parmar V. Nat. Prod. Bioprospect. 2015; 5: 37
    • 17a Tsunoda T, Ozaki F, Itô S. Tetrahedron Lett. 1994; 35: 5081
    • 17b Tsunoda T, Ozaki F, Shirakata N, Tamaoka Y, Yamamoto H, Itô S. Tetrahedron Lett. 1996; 37: 2463
    • 17c Sakamoto I, Nishii T, Ozaki F, Kaku H, Tanaka M, Tsunoda T. Chem. Pharm. Bull. 2005; 53: 1508
  • 18 An analogous cyclodehydration to form an ether has been reported using Mukaiyama’s reagent (1-methyl-2-fluoropyridinium p-toluensulfonate); however, this also resulted in very low isolated yields in our system. For Mukaiyama’s application of this reagent in the synthesis of the natural product karahana ether, see: Mukaiyama T, Iwasawa N, Tsuji T, Narasaka K. Chem. Lett. 1979; 1175
  • 19 Dong J, Yu L, Xie J. ACS Omega 2018; 3: 4974
  • 20 Interestingly, the dimethyl acetal of aldehyde 11 was not observed under these reaction conditions.
  • 21 For an interesting discussion of the anomeric effect in the context of the structurally related spiroketal natural product acortatarin A (8), see: Wurst J, Verano A, Tan D. Org. Lett. 2012; 14: 4442
    • 22a Fitzsimmons B, Leblanc Y, Chan N, Rokach J. J. Am. Chem. Soc. 1988; 110: 5229
    • 22b Chapleur Y, Boquel P, Chrétien F. J. Chem. Soc., Perkin Trans. 1 1989; 703
    • 22c Cocinero E, Gamblin D, Davis B, Simons J. J. Am. Chem. Soc. 2009; 131: 11117
    • 23a Unaleroglu C, Aydin A, Demir A. Tetrahedron: Asymmetry 2006; 17: 742
    • 23b Martínez-Mora E, Caracas M, Escalante C, Espinoza-Hicks C, Quiroz-Florentino H, Delgado F, Tamariz J. Synthesis 2016; 48: 1055
  • 24 Fier P, Maloney K. Angew. Chem. Int. Ed. 2017; 56: 4478
  • 25 Bruno N, Buchwald S. Org. Lett. 2013; 15: 2876
  • 26 CCDC 2288840 (1) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures