Synthesis 2023; 55(24): 4191-4203
DOI: 10.1055/s-0042-1751489
paper

Oxidative Cyclization Reactions Catalyzed by Designed Transition-Metal Complexes: A New Strategy for the Synthesis of Flavone, Quinolone, and Benzofuran Derivatives

a   Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
,
Sain Singh
a   Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
,
Kaushik Ghosh
a   Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
b   Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
,
Naseem Ahmed
a   Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
› Author Affiliations


Abstract

An efficient and convenient synthetic protocol is reported for the synthesis of 2-phenyl-4H-chromen-4-one, 2-phenylquinolin-4(1H)-one, and 11H-benzofuro[3,2-b]chromen-11-one derivatives from 2′-hydroxychalcones, 2′-aminochalcones, and 3-hydroxyflavones, respectively, using transition-metal catalysts and TEMPO as an oxidizing agent. This catalytic heterocyclization approach involves in situ free-radical generation as phenoxyl radicals were detected by EPR spectroscopic study and H2O2 was formed. The present method has numerous advantages, such as high atom-economy, less hazardous synthesis, benign solvent and auxiliaries, easy handling, and broader substrate scope with good to excellent product yields.

Supporting Information



Publication History

Received: 06 July 2023

Accepted after revision: 09 August 2023

Article published online:
26 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Chand K, Rajeshwari Rajeshwari, Hiremathad A, Singh M, Santos MA, Keri RS. Pharmacol. Rep. 2017; 69: 281
    • 1b Evano G, Wang J, Nitelet A. Org. Chem. Front. 2017; 4: 2480
    • 1c Chen X.-J, Cui Q.-X, Wang G.-L, Li X.-L, Zhou X.-L, Zhao H.-J. Zhang M.-Q, Li M.-J, He X.-J, Zheng Q.-S, Wang Y.-L, Li D, Hong P. J. Nat. Prod. 2022; 85: 2351
    • 1d Li T.-Z, Huang X.-Y, Sun J.-J, Geng C.-A, Zhang X.-M, Chen J.-J. Med. Chem. Res. 2022; 31: 2045
    • 1e Nijveldt RJ, van Nood E, van Hoorn DE. C, Boelens PG, van Norren K, van Leeuwen PA. M. Am. J. Clin. Nutr. 2001; 74: 418
    • 1f Barreca D, Gattuso G, Bellocco E, Calderaro A, Trombetta D, Smeriglio A, Laganà G, Daglia M, Meneghini S, Nabavi SM. BioFactors 2017; 43: 495
  • 2 Mahboobi S, Sellmer A, Beckers T. Stud. Nat. Prod. Chem. 2006; 33: 719
  • 3 Tamuli KJ, Sahoo RK, Bordoloi M. New J. Chem. 2020; 44: 20956
    • 4a Bansal M, Kaur K, Tomar J, Kaur L. Biomed. J. Sci. Tech. Res. 2017; 1: 1752
    • 4b Rai VK, Verma F, Sahu GP, Singh M, Rai A. Eur. J. Org. Chem. 2018; 537
  • 5 Su WK, Zhu XY, Li ZH. Org. Prep. Proced. Int. 2009; 41: 69
    • 6a Xue L, Shi L, Han Y, Xia C, Huynh HV, Li F. Dalton Trans. 2011; 40: 7632
    • 6b Reiter M, Ropp S, Gouverneur V. Org. Lett. 2004; 6: 91
    • 6c Huang J, Chen Y, King AO, Dilmeghani M, Larsen RD, Faul MM. Org. Lett. 2008; 10: 2609
  • 7 Batta AE, Jiang WZ, Anness R, Cooksy MB. J. Org. Chem. 2007; 72: 5244
  • 8 Son SH, Cho YY, Yoo H.-S, Lee SJ, Kim YM, Jang HJ, Kim DH, Shin J.-W, Kim N.-J. RSC Adv. 2021; 11: 14000
  • 9 Yang D, Wang Z, Wang X, Sun H, Xie Z, Fan J, Zhang G, Zhang W, Gao Z. J. Mol. Catal. A: Chem. 2017; 426: 24
  • 10 Ricciardulli T, Gorthy S, Adams JS, Thompson C, Karim AM, Neurock M, Flaherty DW. J. Am. Chem. Soc. 2021; 143: 5445
  • 11 Wang X, Lu Y, Dai H.-X, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 12203
  • 12 Du Z, Ng H, Zhang K, Zeng H, Wang J. Org. Biomol. Chem. 2011; 9: 6930
  • 13 Raja GC. E, Ryu JY, Lee J, Lee S. Org. Lett. 2017; 19: 6606
  • 14 Yang R, Du W, Yuan H, Qin T, He R, Ma Y, Du H. Mol. Diversity 2020; 24: 1065
  • 15 Parveen I, Ahmed N. Tetrahedron Lett. 2017; 58: 2302
  • 16 Zhu D, Wu Z, Luo B, Du Y, Liu P, Chen Y, Hu Y, Huang P, Wen S. Org. Lett. 2018; 20: 4815
  • 17 Yatabe T, Jin X, Mizuno N, Yamaguchi K. ACS Catal. 2018; 8: 4969
    • 18a Que L, Tolman WB. Nature 2008; 455: 333
    • 18b Kumar K, Chaudhary VK, Singh UP, Ghosh K. Polyhedron 2021; 199: 115048
  • 19 Chen Y.-X, Qian L.-F, Zhang W, Han B. Angew. Chem. Int. Ed. 2008; 47: 9330
  • 20 Ghosh K, Kumar P, Tyagi N, Singh UP. Inorg. Chem. 2010; 49: 7614
    • 21a Rathi S, Maji A, Singh UP, Ghosh K. Inorg. Chim. Acta 2019; 486: 261
    • 21b Rathi S, Maji A, Singh O, Ghosh K. J. Indian Chem. Soc. 2015; 92: 1913
  • 22 Jazdzewski BA, Tolman WB. Coord. Chem. Rev. 2000; 200–202: 633
  • 23 Pramanick R, Bhattacharjee R, Sengupta D, Datta A, Goswami S. Inorg. Chem. 2018; 57: 12, 6816
  • 24 Sengupta D, Bhattacharjee R, Pramanick R, Rath SP, Chowdhury NS, Datta A, Goswami S. Inorg. Chem. 2016; 55: 9602
  • 25 Moon Y, Kim Y, Hyerim H, Hong S. Chem. Commun. 2013; 49: 8323
  • 26 Monzani E, Quinti L, Perotti A, Casella L, Gulleti M, Randaccio L, Geremia S, Nardin G, Faleschini P, Tabbi G. Inorg. Chem. 1998; 37: 553