Synthesis 2022; 54(24): 5500-5508
DOI: 10.1055/s-0040-1720040
paper

Asymmetric Synthesis of 3,3-Disubstituted Isoindolinones Enabled by Organocatalytic Functionalization of Tertiary Alcohols

Jin-Long Wang
,
Bin Mao
This work was financially supported by the Zhejiang Provincial National­ Natural Science Foundation of China (Zhejiang Provincial NSFC; LY19B020010) and the Fundamental Research Funds for the Provincial Universities of Zhejiang (RF-C2020005).


Abstract

An enantioselective intramolecular heterocyclization with in situ generated 3-hydroxyisoindolinone-derived N-acyliminium ions has been successfully accomplished. In the presence of a catalytic amount of a chiral phosphoric acid, functionalized 3,3-disubstituted isoindolinones bearing N-acyl-N,O-acetal moieties were obtained with good yields and a high level of stereocontrol (up to 98:2 er). This efficient method proceeds under mild conditions and exhibits broad scope with respect to both 3-hydroxyisoindolinones and hydroxyl partners.

Supporting Information



Publication History

Received: 07 July 2022

Accepted after revision: 10 August 2022

Article published online:
23 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Gentry PR, Kokubo M, Bridges TM, Kett NR, Harp JM, Cho HP, Smith E, Chase P, Hodder PS, Niswender CM, Daniels JS, Conn PJ, Wood MR, Lindsley CW. J. Med. Chem. 2013; 56: 9351
    • 1b Hardcastle IR, Liu J, Valeur E, Watson A, Ahmed SU, Blackburn TJ, Bennaceur K, Clegg W, Drummond C, Endicott JA, Golding BT, Griffin RJ, Gruber J, Haggerty K, Harrington RW, Hutton C, Kemp S, Lu X, McDonnell JM, Newell DR, Noble ME, Payne SL, Revill CH, Riedinger C, Xu Q, Lunec J. J. Med. Chem. 2011; 54: 1233

      For selected reviews, see:
    • 2a Awasthi A, Singh M, Rathee G, Chandra R. RSC Adv. 2020; 10: 12626
    • 2b Chen L, Zou YX. Adv. Synth. Catal. 2021; 363: 4159
    • 2c Gao W, Chen MW, Ding Q, Peng Y. Chem. Asian J. 2019; 14: 1306
    • 2d Topolovčan N, Gredičak M. Org. Biomol. Chem. 2021; 19: 4637
    • 2e Basson AJ, McLaughlin MG. Tetrahedron 2022; 114: 132764
    • 2f Wu P, Nielsen TE. Chem. Rev. 2017; 117: 7811
    • 3a Yu X, Lu A, Wang Y, Wu G, Song H, Zhou Z, Tang C. Eur. J. Org. Chem. 2011; 2011: 892
    • 3b Rong MY, Li JS, Zhou Y, Zhang FG, Ma JA. Org. Lett. 2020; 22: 9010
    • 3c Fang K, Huang W, Shan C, Qu J, Chen Y. Org. Lett. 2021; 23: 5523
    • 3d Peter C, Geoffroy P, Miesch M. Org. Chem. Front. 2018; 5: 566
    • 3e Unhale RA, Sadhu MM, Ray SK, Biswas RG, Singh VK. Chem. Commun. 2018; 54: 3516
    • 3f Fang F, Hua G, Shi F, Li P. Org. Biomol. Chem. 2015; 13: 4395
    • 3g Aranzamendi E, Sotomayor N, Lete E. J. Org. Chem. 2012; 77: 2986
    • 3h Feng F, Li J, Li S, Ma J. Adv. Synth. Catal. 2019; 361: 4222
    • 3i Yu X, Wang Y, Wu G, Song H, Zhou Z, Tang C. Eur. J. Org. Chem. 2011; 2011: 3060
    • 3j Zhang H, Wang Y, Xie Y, Zhu Z, Shi F, Tu S. J. Org. Chem. 2014; 79: 7141
    • 3k Glavač D, Zheng C, Dokli I, You S, Gredičak M. J. Org. Chem. 2017; 82: 8752
    • 4a Zhang L, Wu B, Chen Z, Hu J, Zeng X, Zhong G. Chem. Commun. 2018; 54: 9230
    • 4b Unhale RA, Sadhu MM, Singh VK. Org. Lett. 2022; 24: 3319
    • 4c He Y, Cheng C, Chen B, Duan K, Zhuang Y, Yuan B, Zhang M, Zhou Y, Zhou Z, Su Y, Cao R, Qiu L. Org. Lett. 2014; 16: 6366
    • 5a Suc J, Dokli I, Gredicak M. Chem. Commun. 2016; 52: 2071
    • 5b Rajshekhar AU, Nagaraju M, Nirmal KR, Sivasankaran D, Subhrajyoti B, Vinod KS. Tetrahedron Lett. 2017; 58: 145
    • 5c Eitzinger A, Otevrel J, Haider V, Macchia A, Massa A, Faust K, Spingler B, Berkessel A, Waser M. Adv. Synth. Catal. 2021; 363: 1955
  • 6 Suneja A, Unhale RA, Singh VK. Org. Lett. 2017; 19: 476
  • 7 Sikoraiová J, Marchalín Š, Daïch A, Decroix B. Tetrahedron Lett. 2002; 43: 4747
    • 8a Romo D, Meyers AI. Tetrahedron Lett. 1991; 47: 9503
    • 8b Groaning MD, Meyers AI. Tetrahedron Lett. 2000; 56: 9843
  • 9 For review on the progress towards the synthesis of N-acyl-N,O-acetals, see: Ma, X.; Shao, F.; Hu, X.; Liu, X. Synthesis 2022, 54 1203; and references therein.
    • 10a Wang H, Kowalski MD, Lakdawala AS, Vogt FG, Wu L. Org. Lett. 2015; 17: 564
    • 10b Ziegler RE, Desai BK, Jee JA, Gupton BF, Roper TD, Jamison TF. Angew. Chem. Int. Ed. 2018; 57: 7181
  • 11 Li H, Belyk KM, Yin J, Chen Q, Hyde A, Ji Y, Oliver S, Tudge MT, Campeau L.-C, Campos KR. J. Am. Chem. Soc. 2015; 137: 13728
    • 12a Jing K, Wang XN, Wang GW. J. Org. Chem. 2019; 84: 161
    • 12b Romo D, Romine JL, Midura W, Meyers AI. Tetrahedron Lett. 1990; 46: 4951
    • 12c Allin SM, Northfield CJ, Page MI, Slawin AM. Z. Tetrahedron Lett. 1997; 38: 3627
    • 13a Allin SM, James SL, Martin WP, Smith TA. D. Tetrahedron Lett. 2001; 42: 3943
    • 13b Olsen DK, Torian BE, Morgan CD, Braun LL. J. Org. Chem. 1980; 45: 4049
    • 14a Kim H, Lim W, Im D, Kim DG, Rhee YH. Angew. Chem. Int. Ed. 2012; 51: 12055
    • 14b Nguyen NH, Nguyen QH, Biswas S, Patil DV, Shin S. Org. Lett. 2019; 21: 9009
    • 14c Vellalath S, Coric I, List B. Angew. Chem. Int. Ed. 2010; 49: 9749
    • 15a Maryanoff BE, Zhang H.-C, Cohen JH, Turchi IJ, Maryanoff CA. Chem. Rev. 2004; 104: 1431
    • 15b Lanke V, Marek I. Chem. Sci. 2020; 11: 9378
    • 15c Gualandi A, Rodeghiero G, Cozzi PG. Asian J. Org. Chem. 2018; 7: 1957
    • 16a Pan Y, Jiang Q, Rajkumar S, Zhu C, Xie J, Yu S, Chen Y, He Y.-P, Yang X. Adv. Synth. Catal. 2021; 363: 200
    • 16b Chen L, Yin X.-P, Wang C.-H, Zhou J. Org. Biomol. Chem. 2014; 12: 6033
  • 17 Zhang C, Gao Q, Li M, Wang J, Yu C, Mao B. Org. Lett. 2021; 23: 3949
  • 20 CCDC 2161973 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures