Synlett 2017; 28(09): 1096-1100
DOI: 10.1055/s-0036-1558952
letter
© Georg Thieme Verlag Stuttgart · New York

Catalytic Enantioselective Aza-Piancatelli Rearrangement

Amol B. Gade
a   Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
b   Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India   eMail: n.patil@ncl.res.in
,
Nitin T. Patil*
a   Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
b   Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India   eMail: n.patil@ncl.res.in
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 01. Dezember 2016

Accepted after revision: 20. Januar 2017

Publikationsdatum:
13. Februar 2017 (online)


Abstract

The design and development of an enantioselective aza-­Piancatelli rearrangement reaction are described. In the presence of a chiral phosphoric acid catalyst, furylcarbinols react with anilines to ­afford highly functionalized cyclopentenones with excellent diastereo- and enantioselectivities. The process was shown to be scalable, and up to 1 gram of starting material could be employed under mild reaction conditions.

Supporting Information

 
  • References and Notes

  • 1 Piancatelli G, Scettri A, Barbadoro S. Tetrahedron Lett. 1976; 17: 3555-3555

    • For reviews, see:
    • 2a Simeonov SP, Nunes JP. M, Guerra K, Kurteva VB, Afonso CA. M. Chem. Rev. 2016; 116: 5744-5744
    • 2b Heasley B. Curr. Org. Chem. 2014; 18: 641-641
    • 2c Aitken D, Eijsberg H, Frongia A, Ollivier J, Piras PP. Synthesis 2014; 46: 1-1

    • For selected references, see:
    • 2d Liu G, Shirley ME, Van KN, McFarlin RL, Romo D. Nat. Chem. 2013; 5: 1049-1049
    • 2e Jia F, Hong J, Sun P.-H, Chen J.-X, Chen W.-M. Synth. Commun. 2013; 43: 2641-2641
    • 2f Boltz DA, Ilyushina NA, Arnold CS, Babu YS, Webster RG, Govorkova EA. Antiviral Res. 2008; 80: 150-150
    • 2g Meurer LC, Finke PE, Owens KA, Tsou NN, Ball RG, Mills SG, MacCoss M, Sadowski S, Cascieri MA, Tsao K.-L, Chicchi GG, Egger LA, Luell S, Metzger JM, MacIntyre DE, Rupniak NM. J, Williams AR, Hargreaves RJ. Bioorg. Med. Chem. Lett. 2006; 16: 4504-4504
    • 2h Finke PE, Meurer LC, Levorse DA, Mills SG, MacCoss M, Sadowski S, Cascieri MA, Tsao K.-L, Chicchi GG, Metzger JM, MacIntyre DE. Bioorg. Med. Chem. Lett. 2006; 16: 4497-4497
    • 2i Crimmins MT, Tabet EA. J. Org. Chem. 2001; 66: 4012-4012
    • 2j Storch de Gracia I, Bobo S, Martin-Ortega MD, Chiara JL. Org. Lett. 1999; 1: 1705-1705
    • 2k Boiron A, Zillig P, Faber D, Giese B. J. Org. Chem. 1998; 63: 5877-5877
    • 3a Fisher D, Palmer LI, Cook JE, Davis JE, de Alaniz JR. Tetrahedron 2014; 70: 4105-4105
    • 3b Palmer LI, de Alaniz JR. Org. Lett. 2013; 15: 476-476
    • 3c Spencer WT. III, Vaidya T, Frontier AJ. Eur. J. Org. Chem. 2013; 3621-3621
    • 3d Henschke JP, Liu YL, Huang XH, Chen YF, Meng DC, Xia LZ, Wei XQ, Xie AP, Li DH, Huang Q, Sun T, Wang DH, Gu XB, Huang XY, Wang LH, Xiao J, Qiu SH. Org. Process Res. Dev. 2012; 16: 1905-1905
    • 3e Rodríguez AR, Spur BW. Tetrahedron Lett. 2003; 44: 7411-7411
    • 3f Rodríguez A, Nomen M, Spur BW, Godfroid JJ. Eur. J. Org. Chem. 1999; 2655-2655
    • 3g Dygos JH, Adamek JP, Babiak KA, Behling JR, Medich JR, Ng JS, Wieczorek JJ. J. Org. Chem. 1991; 56: 2549-2549
    • 3h Stork G, Kowalski C, Garcia G. J. Am. Chem. Soc. 1975; 97: 3258-3258

      For a review, see:
    • 4a Piutti C, Quartieri F. Molecules 2013; 18: 12290-12290

    • For reports on the Piancatelli rearrangement, see:
    • 4b Michalak K, Wicha J. Tetrahedron 2014; 70: 5073-5073
    • 4c Frelek J, Karchier M, Madej D, Michalak K, Różański P, Wicha J. Chirality 2014; 26: 300-300
    • 4d Faza ON, López CS, Álvarez R, de Lera AR. Chem. Eur. J. 2004; 10: 4324-4324 ; see also refs. 3a and 3b

    • For reports on aza-Piancatelli rearrangement, see:
    • 4e Leboeuf D, Marin L, Michelet B, Perez-Luna A, Guillot R, Schulz E, Gandon V. Chem. Eur. J. 2016; 22: 16165-16165
    • 4f Bredihhin A, Luiga S, Vares L. Synthesis 2016; 48: 4181-4181
    • 4g Reddy BV. S, Reddy YV, Singarapu KK. Org. Biomol. Chem. 2016; 14: 1111-1111
    • 4h Chung R, Yu D, Thai VT, Jones AF, Veits GK, de Alaniz JR, Hein JE. ACS Catal. 2015; 5: 4579-4579
    • 4i Veits GK, Wenz DR, Palmer LI, St Amant AH, Hein JE, de Alaniz JR. Org. Biomol. Chem. 2015; 13: 8465-8465
    • 4j Palmer LI, de Alaniz JR. Synlett 2014; 25: 8-8
    • 4k Leboeuf D, Schulz E, Gandon V. Org. Lett. 2014; 16: 6464-6464
    • 4l Yu D, Thai VT, Palmer LI, Veits GK, Cook JE, de Alaniz JR, Hein JE. J. Org. Chem. 2013; 78: 12784-12784
    • 4m Wenz DR, de Alaniz JR. Org. Lett. 2013; 15: 3250-3250
    • 4n Reddy BV. S, Narasimhulu G, Lakshumma PS, Reddy YV, Yadav JS. Tetrahedron Lett. 2012; 53: 1776-1776
    • 4o Reddy BV. S, Reddy YV, Lakshumma PS, Narasimhulu G, Yadav JS, Sridhar B, Reddy PP, Kunwar AC. RSC Adv. 2012; 2: 10661-10661
    • 4p Liu J, Shen Q, Yu J, Zhu M, Han J, Wang L. Eur. J. Org. Chem. 2012; 6933-6933
    • 4q Palmer LI, de Alaniz JR. Angew. Chem. Int. Ed. 2011; 50: 7167-7167
    • 4r Veits GK, Wenz DR, de Alaniz JR. Angew. Chem. Int. Ed. 2010; 49: 9484-9484
    • 5a Cai Y, Tang Y, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 14126-14126
    • 5b Li H, Tong R, Sun J. Angew. Chem. Int. Ed. 2016; 55: 15125-15125

      For reactions triggered by the chiral phosphoric acid-catalyzed dehydration, see:
    • 6a Chatupheeraphat A, Liao H.-H, Mader S, Sako M, Sasai H, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 4803-4803
    • 6b Alamsetti SK, Spanka M, Schneider C. Angew. Chem. Int. Ed. 2016; 55: 2392-2392
    • 6c Kretzschmar M, Hodík T, Schneider C. Angew. Chem. Int. Ed. 2016; 55: 9788-9788
    • 6d Saha S, Schneider C. Chem. Eur. J. 2015; 21: 2348-2348
    • 6e Saha S, Schneider C. Org. Lett. 2015; 17: 648-648
    • 6f Saha S, Alamsetti SK, Schneider C. Chem. Commun. 2015; 51: 1461-1461
    • 6g Liao H.-H, Chatupheeraphat A, Hsiao C.-C, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 15540-15540
    • 6h Zhao W, Wang Z, Chu B, Sun S. Angew. Chem. Int. Ed. 2015; 54: 1910-1910
    • 6i Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460-5460
    • 6j Wang Z, Ai F, Wang Z, Zhao W, Zhu G, Lin Z, Sun J. Wang Z, Ai F, Wang Z, Zhao W, Zhu G, Lin Z, Sun J. J. Am. Chem. Soc. 2015; 137: 383-383
    • 6k Hsiao C.-C, Raja S, Liao H.-H, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 5762-5762
    • 6l El-Sepelgy O, Haseloff S, Alamsetti SK, Schneider C. Angew. Chem. Int. Ed. 2014; 53: 7923-7923
    • 6m Hsiao C.-C, Liao H.-H, Rueping M. Angew.Chem., Int. Ed. 2014; 53: 13258-13258
    • 6n Guo C, Song J, Huang J.-Z, Chen P.-H, Luo S.-W, Gong L.-Z. Angew. Chem. Int. Ed. 2012; 51: 1046-1046
    • 6o Song L, Guo Q.-X, Li X.-C, Tian J, Peng Y.-G. Angew. Chem. Int. Ed. 2012; 51: 1899-1899
    • 6p Rueping M, Uria U, Lin M.-Y, Atodiresei I. J. Am. Chem. Soc. 2011; 133: 3732-3732
    • 6q Guo Q.-X, Peng Y.-G, Zhang J.-W, Song L, Feng Z, Gong L.-Z. Org. Lett. 2010; 11: 4620-4620
    • 6r Rueping M, Nachtsheim BN, Moreth SA, Bolte M. Angew. Chem. Int. Ed. 2008; 47: 593-593

      For reviews on BINOL-based Brønsted acid catalysis, see:
    • 7a Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047-9047
    • 7b Patil NT, Mutyala AK. Org. Chem. Front. 2014; 1: 582-582
    • 7c Zamfir A, Schenker S, Freund S, Tsogoeva SB. Org. Biomol. Chem. 2010; 8: 5262-5262
    • 7d Terada M. Bull. Chem. Soc. Jpn. 2010; 83: 101-101
    • 7e Kampen D, Reisinger CM, List B. Top. Curr. Chem. 2010; 291: 395-395
    • 7f Adair G, Mukherjee S, List B. Aldrichimica Acta 2008; 41: 31-31
    • 7g Terada M. Chem. Commun. 2008; 4097-4097
    • 7h Akiyama T. Chem. Rev. 2007; 107: 5744-5744

      For reviews on asymmetric electrocyclic reactions, see:
    • 8a Thompson S, Coyne AG, Knipe PC, Smith MD. Chem. Soc. Rev. 2011; 40: 4217-4217
    • 8b Shimada N, Stewart C, Tius MA. Tetrahedron 2011; 67: 5851-5851
    • 8c Vaidya T, Eisenberg R, Frontier AJ. ChemCatChem 2011; 3: 1531-1531

    • For recent reports on chiral phosphoric acid-catalyzed Nazarov cyclization reactions, see:
    • 8d Yang B.-M, Cai P.-J, Tu Y.-Q, Yu Z.-X, Chen Z.-M, Wang S.-H, Wang S.-H, Zhang F.-M. J. Am. Chem. Soc. 2015; 137: 8344-8344
    • 8e Jolit A, Walleser PM, Yap GP. A, Tius MA. Angew. Chem. Int. Ed. 2014; 53: 6180-6180
    • 8f Rueping M, Ieawsuwan W. Chem. Commun. 2011; 47: 11450-11450
    • 8g Rueping M, Ieawsuwan W, Antonchick AP, Nachtsheim BJ. Angew. Chem. Int. Ed. 2007; 46: 2097-2097

      For reports from our laboratory on chiral phosphoric acid catalysis, see:
    • 9a Shinde VS, Mane MV, Vanka K, Mallick A, Patil NT. Chem. Eur. J. 2015; 21: 975-975
    • 9b Bagle PN, Shinde VS, Patil NT. Chem. Eur. J. 2015; 21: 3580-3580
    • 9c Patil NT, Raut VS, Tella RB. Chem. Commun. 2013; 49: 570-570
    • 9d Patil NT, Mutyala AK, Konala A, Tella RB. Chem. Commun. 2012; 48: 3094-3094
  • 10 See the Supporting Information for details. CCDC 1511632 contains the supplementary crystallographic data for compound 3k. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 11 (4R)-4-Anilino-5,5-diphenylcyclopent-2-en-1-one (3a); Typical Procedure A flame-dried screw-capped vial equipped with magnetic stirrer bar was charged with carbinol 1a (0.1 mmol, 1 equiv) and PhNH2 (2a; 0.12 mmol, 1.2 equiv). PhF (4 mL) was added at r.t., and the mixture was stirred for 10 min. Chiral phosphoric acid catalyst 4g (0.005 mmol, 5 mol%) was added under flowing N2. The reaction vial was fitted with a cap, and the mixture was stirred at 50 °C for 20 h. When conversion of the starting material was complete (TLC), the mixture was filtered through a plug of Celite, and the filtrate was concentrated. The residue was purified by column chromatography (silica gel, PE–EtOAc) to give an analytically pure white solid; yield: 27.3 mg (84%); mp 137–138 °C; Rf = 0.32 (PE–EtOAc, 9:1); [α]D 25 –192.45 (c = 1.18, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 7.76 (br s, 1 H), 7.60–7.42 (m, 2 H), 7.32 (br s, 2 H), 7.22 (br s, 3 H), 7.10 (br s, 2 H), 6.99 (br s, 2 H), 6.69 (br s, 1 H), 6.44 (br. s, 3 H), 5.54 (d, J = 8.0 Hz, 1 H), 3.40–3.17 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 206.9, 161.8, 145.8, 140.7, 140.5, 133.7, 129.7, 129.4, 128.5, 128.4, 128.2, 127.4, 127.3, 118.3, 113.4, 64.9, 63.4. HRMS (ESI): m/z [M + H]+ calcd for C23H20NO: 326.1539; found: 326.1538. HPLC: Chiralpak IB (80:20 hexane–i-PrOH), flow rate: 1.0 mL/min; λ = 254 nm; t R = 8.2 min (major), 9.0 min (minor); er = 97:3.