Synthesis 2014; 46(19): 2622-2628
DOI: 10.1055/s-0034-1378336
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Multigram Syntheses of Air-Stable, Fluorescent Primary Phosphines via Palladium-Catalyzed Phosphonylation of Aryl Bromides

Laura H. Davies
School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK   Fax: +44(191)2226929   Email: lee.higham@ncl.ac.uk
,
Jennifer F. Wallis
School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK   Fax: +44(191)2226929   Email: lee.higham@ncl.ac.uk
,
Michael R. Probert
School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK   Fax: +44(191)2226929   Email: lee.higham@ncl.ac.uk
,
Lee J. Higham*
School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK   Fax: +44(191)2226929   Email: lee.higham@ncl.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 19 December 2013

Accepted after revision: 25 May 2014

Publication Date:
24 July 2014 (online)


Abstract

Air-stable, fluorescent primary phosphines have been prepared on a multigram scale. The two key synthetic steps are an optimized palladium-catalyzed phosphonylation of aryl bromides and a boron–carbon bond formation reaction. The method provides a valuable synthetic route to novel fluorescent derivatives via a key phosphonate intermediate.

Supporting Information

 
  • References

    • 1a Maier L In Organic Phosphorus Compounds . Vol. 1. Kosolapoff GM, Maier L. Wiley-Interscience; New York: 1972: 4
    • 1b Higham LJ. Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences. In Catalysis by Metal Complexes. Vol. 37. Peruzzini M, Gonsalvi L. Springer; Berlin: 2011: 1
    • 2a Brynda M. Coord. Chem. Rev. 2005; 249: 2013
    • 2b Katti KV, Pillarsetty N, Raghuraman K. Top. Curr. Chem. 2003; 229: 121
    • 3a Yoshifuji M, Shibayama K, Inamoto N, Matsushita T, Nishimoto K. J. Am. Chem. Soc. 1983; 105: 2495
    • 3b Yoshifuji M, Shibayama K, Toyota K, Inamoto N. Tetrahedron Lett. 1983; 24: 4227
    • 4a Henderson W, Alley SR. J. Organomet. Chem. 2002; 656: 120
    • 4b Pillarsetty N, Raghuraman K, Barnes CL, Katti KV. J. Am. Chem. Soc. 2005; 127: 331
    • 5a Davies LH, Stewart B, Harrington RW, Clegg W, Higham LJ. Angew. Chem. Int. Ed. 2012; 51: 4921
    • 5b Note the presence of peroxides will oxidize the phosphines and thus these should be avoided (aged ether solvents, sunlight, etc.).
  • 6 Stewart B, Harriman A, Higham LJ. Organometallics 2011; 30: 5338
  • 7 Loudet A, Burgess K. Chem. Rev. 2007; 107: 4891
  • 8 Benniston AC, Copley G, Elliott KJ, Harrington RW, Clegg W. Eur. J. Org. Chem. 2008; 16: 2705
  • 9 Please note that if lower equivalents are used the yield is significantly reduced, e.g., i-Pr2NEt (3 equiv) and Et2O·BF3 (4 equiv) yields only 10% of 3.

    • For comprehensive reviews, see:
    • 10a Tappe FM. J, Trepohl VT, Oestreich M. Synthesis 2010; 3037
    • 10b Beletskaya IP, Kazankova MA. Russ. J. Org. Chem. 2002; 38: 1391
    • 10c Van der Jeught S, Stevens CV. Chem. Rev. 2009; 109: 2672
    • 11a Kalek M, Stawinski J. Organometallics 2007; 26: 5840
    • 11b Kalek M, Stawinski J. Organometallics 2008; 27: 5876
    • 11c Kohler MC, Grimes TV, Wang X, Cundari TR, Stockland RA. Jr. Organometallics 2009; 28: 1193
  • 12 Kalek M, Ziadi A, Stawinski J. Org. Lett. 2008; 10: 4637
    • 13a Mésangeau C, Yous S, Pérès B, Lesieur D, Besson T. Tetrahedron Lett. 2005; 46: 2465
    • 13b Ficks A, Sibbald C, Ojo S, Harrington RW, Clegg W, Higham LJ. Synthesis 2013; 45: 265
    • 14a Shen Z, Röhr H, Rurack K, Uno H, Spieles M, Schulz B, Reck G, Ono N. Chem. Eur. J. 2004; 10: 4853
    • 14b Ziessel R, Goze C, Ulrich G, Césario M, Retailleau P, Harriman A, Rostron JP. Chem. Eur. J. 2005; 11: 7366
  • 15 The quantum yield was referenced to 4,4-difluoro-8-phenyl-1,3,5,7-tetramethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene, (φF = 0.76 in THF (λabs = 524 nm, λem = 537 nm, ε = 86 000 M–1cm–1) in: Gabe Y, Urano Y, Kikuchi K, Kojima H, Nagano T. J. Am. Chem. Soc. 2004; 126: 3357
    • 16a Jurisson SS, Benedict JJ, Elder RC, Deutsch E. Inorg. Chem. 1983; 22: 1332
    • 16b Torres Martin de Rosales R, Finucane C, Mather SJ, Blower PJ. Chem. Commun. 2009; 4847
    • 16c Kowada T, Kikuta J, Kubo A, Ishii M, Maeda H, Mizukami S, Kikuchi K. J. Am. Chem. Soc. 2011; 133: 17772
    • 16d Palma E, Correia JD. G, Oliveira BL, Gano L, Santos IC, Santos I. Dalton Trans. 2011; 40: 2787
  • 17 Kyba EP, Liu ST, Harris RL. Organometallics 1983; 2: 1877
  • 18 Note: direct reduction of phosphonate 6 even in dilute solution caused decomposition of the Bodipy core.
    • 19a Hiney RM, Higham LJ, Müller-Bunz H, Gilheany DG. Angew. Chem. Int. Ed. 2006; 45: 7248
    • 19b Bartlett RA. M, Olmstead M, Power PP, Sigel GA. Inorg. Chem. 1987; 26: 1941
    • 19c Reiter SA, Assmann B, Nogai SD, Mitzel NW, Schmidbaur H. Helv. Chim. Acta 2002; 85: 1140
  • 20 CrysAlisPro . Agilent Technologies Ltd; Oxford (UK): 2013
  • 21 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA. K, Puschmann H. J. Appl. Cryst. 2009; 42: 339
  • 22 Sheldrick GM. Acta Crystallogr. Sect., A 2008; 64: 112
  • 23 The supplementary crystallographic data CCDC 967537–967539 can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK; fax: +44(1223)336033; E-mail: >deposit@ccdc.cam.ac.uk.