Synthesis 2024; 56(09): 1438-1448
DOI: 10.1055/a-2236-0209
paper

LiO-t-Bu/CsF-Mediated Formal Hydrolysis of Trifluoromethyl Arenes

Masanori Shigeno
a   Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
b   JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
,
Moe Kiriyama
a   Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
,
Koki Izumi
a   Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
,
Keita Sasaki
a   Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
,
Ozora Sasamoto
a   Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
,
Kanako Nozawa-Kumada
a   Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
c   Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
,
Yoshinori Kondo
a   Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
› Author Affiliations
This work was financially supported by JSPS KAKENHI Grant Number 19H03346 (Y.K.), JST, PRESTO Grant Number JPMJPR22N7 (M.S.), the New Energy and Industrial Technology Development Organization (NEDO) of Japan, Grant Number JPNP20004 (M.S.), Daicel Corporation (M.S.), Takeda Science Foundation (M.S.), and also Research Support Project for Life Science and Drug Discovery (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant Number JP23ama121040 (M.S.).


Abstract

This study investigates the formal hydrolysis of trifluoromethyl arenes without deprotonation functionality utilizing a combined Brønsted base system comprising LiO-t-Bu and CsF. The reaction conditions were optimized using 4-(trifluoromethyl)biphenyl as the model substrate, achieving a 94% yield with LiO-t-Bu/CsF. The scope of the substrate was explored, demonstrating the applicability of the system to various functionalities, such as (hetero)aryl, tert-butyl, methyl, amide, and alkenyl moieties. Mechanistic insights suggest a single electron transfer process.

Supporting Information



Publication History

Received: 23 September 2023

Accepted after revision: 28 December 2023

Accepted Manuscript online:
28 December 2023

Article published online:
01 February 2024

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Liu Q, Ni C, Hu J. Natl. Sci. Rev. 2017; 4: 303
    • 1b Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
    • 1c Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
    • 1d Alonso C, Marigorta EM, Rubíales G, Palacios F. Chem. Rev. 2015; 115: 1847
    • 1e Chu L, Qing F. Acc. Chem. Res. 2014; 47: 1513
    • 1f Landelle G, Panossian A, Pazenok S, Vors J, Leroux FR. Beilstein J. Org. Chem. 2013; 9: 2476
    • 1g Chen P, Liu G. Synthesis 2013; 45: 2919
    • 1h Macé Y, Magnier E. Eur. J. Org. Chem. 2012; 2479
    • 1i Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
    • 1j Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475

      For reviews, see:
    • 2a Zhao F, Zhou W, Zuo Z. Adv. Synth. Catal. 2022; 364: 234
    • 2b Simur TT, Ye T, Yu Y.-J, Zhang F.-L, Wang Y.-F. Chin. Chem. Lett. 2022; 33: 1193
    • 2c Yan G, Qiu K, Guo M. Org. Chem. Front. 2021; 8: 3915
    • 2d Ma X, Song Q. Chem. Soc. Rev. 2020; 49: 9197
    • 2e Jaroschik F. Chem. Eur. J. 2018; 24: 14572
    • 2f Hamel JD, Paquin JF. Chem. Commun. 2018; 54: 10224
    • 2g Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
    • 2h Stahl T, Klare HF. T, Oestreich M. ACS Catal. 2013; 3: 1578
    • 3a Luo C, Bandar JS. J. Am. Chem. Soc. 2019; 141: 14120
    • 3b Sugihara N, Suzuki K, Nishimoto Y, Yasuda M. J. Am. Chem. Soc. 2021; 143: 9308
    • 3c Chen K, Berg N, Gschwind R, König B. J. Am. Chem. Soc. 2017; 139: 18444
    • 3d Wang H, Jui NT. J. Am. Chem. Soc. 2018; 140: 163
    • 3e Vogt DB, Seath CP, Wang H, Jui NT. J. Am. Chem. Soc. 2019; 141: 13203
    • 3f Liu C, Li K, Shang R. ACS Catal. 2022; 12: 4103
    • 3g Luo YC, Tong FF, Zhang Y, He CY, Zhang X. J. Am. Chem. Soc. 2021; 143: 13971
    • 3h Yamauchi Y, Fukuhara T, Hara S, Senboku H. Synlett 2008; 438
    • 3i Zhu J, Pérez M, Caputo CB, Stephan DW. Angew. Chem. Int. Ed. 2016; 55: 1417
    • 3j Ferraris D, Cox C, Anand R, Lectka T. J. Am. Chem. Soc. 1997; 119: 4319
    • 3k Saito K, Umi T, Yamada T, Suga T, Akiyama T. Org. Biomol. Chem. 2017; 15: 1767
    • 4a Dang H, Whittaker AM, Lalic G. Chem. Sci. 2016; 7: 505
    • 4b Munoz SB, Ni C, Zhang Z, Wang F, Shao N, Mathew T, Olah GA, Prakash GK. S. Eur. J. Org. Chem. 2017; 2322
    • 4c Sap JB. I, Straathof NJ. W, Knauber T, Meyer CF, Médebielle M, Buglioni L, Genicot C, Trabanco AA, Noël T, Am Ende CW, Gouverneur V. J. Am. Chem. Soc. 2020; 142: 9181
    • 4d Xiao J, Wu J, Zhao W, Cao S. J. Fluorine Chem. 2013; 146: 76
    • 4e Sabater S, Mata JA, Peris E. Nat. Commun. 2013; 4: 2553
    • 4f Iwamoto H, Imiya H, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2020; 142: 19360
    • 4g Scott VJ, Çelenligil-Çetin R, Ozerov OV. J. Am. Chem. Soc. 2005; 127: 2852
    • 5a Idogawa R, Kim Y, Shimomori K, Hosoya T, Yoshida S. Org. Lett. 2020; 22: 9292
    • 5b Henne AL, Newman MS. J. Am. Chem. Soc. 1938; 60: 1697
    • 6a Clavel P, Léger-Lambert MP, Biran C, Serein-Spirau F, Bordeau M, Roques N, Marzouk H. Synthesis 1999; 829
    • 6b Amii H, Hatamoto Y, Seo M, Uneyama K. J. Org. Chem. 2001; 66: 7216
  • 7 Ito S, Takahashi F, Yorimitsu H. Asian J. Org. Chem. 2021; 10: 1440
  • 8 Mandal D, Gupta R, Jaiswal AK, Young RD. J. Am. Chem. Soc. 2020; 142: 2572
    • 9a Hennion GF, Schmidle CJ. J. Am. Chem. Soc. 1943; 65: 2467
    • 9b Le Fave GM. J. Am. Chem. Soc. 1949; 71: 4148
    • 9c Hauptschein M, Nodiff EA, Saggiomo AJ. J. Am. Chem. Soc. 1954; 76: 1051
    • 9d Pews RG, Gall JA. J. Fluorine Chem. 1990; 50: 365
    • 9e Shokova EA, Rozov AK, Kovalev VV. Russ. J. Org. Chem. 1999; 35: 670
    • 9f Maginnity PM, Gaulin CA. J. Am. Chem. Soc. 1951; 73: 3579
    • 9g Kethe A, Tracy AF, Klumpp DA. Org. Biomol. Chem. 2011; 9: 4545
    • 9h Wang F, Hu J. Chin. J. Chem. 2009; 27: 93
    • 9i Le Fave GM, Scheurer PG. J. Am. Chem. Soc. 1950; 72: 2464
    • 9j See also: Prakash GK. S, Mathew T, Hoole D, Esteves PM, Wang Q, Rasul G, Olah GA. J. Am. Chem. Soc. 2004; 126: 15770
    • 10a Jones RG. J. Am. Chem. Soc. 1947; 69: 2346
    • 10b Belcher R, Stacey M, Sykes A, Tatlow JC. J. Chem. Soc. 1954; 3846
    • 10c Ramig K, Englander M, Kallashi F, Livchits L, Zhou J. Tetrahedron Lett. 2002; 43: 7731
    • 10d Haider N, Wanko R. Heterocycles 1994; 38: 1805
    • 10e Kondratov IS, Tolmachova NA, Dolovanyuk VG, Gerus II, Bergander K, Daniliuc C.-G, Haufe G. Eur. J. Org. Chem. 2014; 2443
    • 10f Qiao JX, Wang TC, Hiebert S, Hu CH, Schumacher WA, Spronk SA, Clark CG, Han Y, Hua J, Price LA, Shen H, Chacko SA, Everlof G, Bostwick JS, Steinbacher TE, Li Y.-X, Huang CS, Seiffert DA, Rehfuss R, Wexler RR, Lam PY. S. ChemMedChem 2014; 9: 2327
    • 10g Li Y, Zhang P, Ma Q, Song H, Liu Y, Wang Q. Bioorg. Med. Chem. Lett. 2012; 22: 6858

      As a limited exception, Kobayashi et al. reported that the hydrolysis of 2- and 3-(trifluoromethyl)benzofuran occurs with NaOH in a low yield (<10% yield), see:
    • 11a Kobayashi Y, Kumadaki I, Hanzawa Y. Chem. Pharm. Bull. 1977; 25: 3009
    • 11b See also: Kobayashi Y, Kumadaki I, Hanzawa Y, Mimura M. Chem. Pharm. Bull. 1975; 23: 636

      Specific substrates were reported to undergo hydrolysis under photoirradiation with or without base, see:
    • 12a Grinter R, Heilbronner E, Petrzilka T, Seiler P. Tetrahedron Lett. 1968; 3845
    • 12b Manfrin A, Hänggli A, van den Wildenberg J, McNeill K. Environ. Sci. Technol. 2020; 54: 11109

      The quinone methide intermediate was used for intra- and intermolecular coupling reactions with nucleophiles, see:
    • 13a Jourdan GP, Dreikorn BA. J. Org. Chem. 1982; 47: 5255
    • 13b Strekowski L, Patterson SE, Janda L, Wydra RL, Harden DB, Lipowska M, Cegla MT. J. Org. Chem. 1992; 57: 196
    • 13c Kiselyov AS, Strekowski L. Tetrahedron Lett. 1994; 35: 7597
    • 13d Kiselyov AS. Tetrahedron 2001; 57: 5321
    • 13e O’Mahony G, Pitts AK. Org. Lett. 2010; 12: 2024
    • 13f Qiao JX, Wang TC, Hu C, Li J, Wexler RR, Lam PY. S. Org. Lett. 2011; 13: 1804
    • 13g Hammann JM, Unzner TA, Magauer T. Chem. Eur. J. 2014; 20: 6733
    • 14a Shigeno M, Hanasaka K, Sasaki K, Nozawa-Kumada K, Kondo Y. Chem. Eur. J. 2019; 25: 3235
    • 14b Shigeno M, Sasaki K, Nozawa-Kumada K, Kondo Y. Org. Lett. 2019; 21: 4515
    • 14c Shigeno M, Tohara I, Nozawa-Kumada K, Kondo Y. Eur. J. Org. Chem. 2020; 1987
    • 14d Shigeno M, Sasaki K, Hanasaka K, Tohara I, Nozawa-Kumada K, Kondo Y. Heterocycles 2021; 103: 592
    • 14e Shigeno M, Hanasaka K, Tohara I, Izumi K, Yamakoshi H, Kwon E, Nozawa-Kumada K, Kondo Y. Org. Lett. 2022; 24: 809
    • 14f Shigeno M, Tohara I, Sasaki K, Nozawa-Kumada K, Kondo Y. Org. Lett. 2022; 24: 4825
    • 14g Shigeno M, Tohara I, Nozawa-Kumada K, Kondo Y. Synlett 2023; 34: 1376
  • 15 Concerning this study, we recently demonstrated that phosphazene base t-Bu-P2 catalyzes the defluorinative transformations of (2,2,2-trifluoroethyl)arenes with alkane nitriles, see: Shigeno M, Shishido Y, Soga A, Nozawa-Kumada K, Kondo Y. J. Org. Chem. 2023; 88: 1796
  • 16 The reactions of 1e without 2,2′-bipyridine and with 1,10-phenanthroline instead of 2,2′-bipyridine resulted in lower yields of product 2e, which were 29% and 14%, respectively. The addition of 2,2′-bipyridine was also effective for the reactions of substrates 1g, 1i, 1j, 1k, and 1p. The yields of products 2g, 2i, 2j, 2k, and 2p were 52%, 39%, 48%, 54%, and 61%, respectively, in the reactions with 2,2′-bipyridine (Scheme 2), whereas the yields were 22%, 35%, 46%, 39%, and 43%, respectively, in the reactions without 2,2′-bipyridine. For a review on single-electron transfer process by tert-butoxide with nitrogen-containing aromatic compounds, see: Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219

    • When trifluoromethylbenzenes bearing methoxy, phenoxy, and phenylthiol groups at the para-position were tested as substrates, not only hydrolysis of the trifluoromethyl group but also the nucleophilic aromatic substitution (SNAr) reaction of the ether or thioether moieties took place (Scheme S1). For such substitution reactions by Brønsted bases, see:
    • 17a Kaga A, Hayashi H, Hakamata H, Oi M, Uchiyama M, Takita R, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 11807
    • 17b Pang JH, Kaga A, Chiba S. Chem. Commun. 2018; 54: 10324
    • 17c ten Hoeve W, Kruse CG, Luteyn JM, Thiecke JR. G, Wynberg H. J. Org. Chem. 1993; 58: 5101
    • 17d Wang X, Li C, Wang X, Wang Q, Dong X.-Q, Duan A, Zhao W. Org. Lett. 2018; 20: 4267
    • 17e Wang X, Yang Q.-X, Long C.-Y, Tan Y, Qu Y.-X, Su M.-H, Huang S.-J, Tan W, Wang X.-Q. Org. Lett. 2019; 21: 5111
    • 17f Li C, Qin Q, Guan A, Yang W, Zhao W. J. Org. Chem. 2023; 88: 7525
    • 17g Masuya Y, Kawashima Y, Kodama T, Chatani N, Tobisu M. Synlett 2019; 30: 1995
    • 17h Minami Y, Matsuyama N, Takeichi Y, Watanabe R, Mathew S, Nakajima Y. Chem. Commun. 2023; 14
    • 17i Minami Y, Inagaki Y, Tsuyuki T, Sato K, Nakajima Y. JACS Au 2023; 3: 2323

    • For our relevant studies on the phosphazene base t-Bu-P4 catalyzed methoxy substitutions, see:
    • 17j Shigeno M, Hayashi K, Nozawa-Kumada K, Kondo Y. Chem. Eur. J. 2019; 25: 6077
    • 17k Shigeno M, Hayashi K, Nozawa-Kumada K, Kondo Y. Org. Lett. 2019; 21: 5505
    • 17l Shigeno M, Hayashi K, Nozawa-Kumada K, Kondo Y. Org. Lett. 2020; 22: 9107
    • 17m Shigeno M, Hayashi K, Korenaga T, Nozawa-Kumada K, Kondo Y. Org. Chem. Front. 2022; 9: 3656
    • 17n See also: Shigeno M, Nakamura R, Hayashi K, Nozawa-Kumada K, Kondo Y. Org. Lett. 2019; 21: 6695
    • 17o Shigeno M, Shishido Y, Hayashi K, Nozawa-Kumada K, Kondo Y. Eur. J. Org. Chem. 2021; 3932

      At this stage, the molecular structure of radical species relevant to the EPR signal is not clear and further studies are required to clarify it. As related to this, Kumar et al. reported that a strong EPR signal was obtained by heating the KO-t-Bu solution in benzene, see:
    • 18a Bhakuni BS, Yadav A, Kumar S, Kumar S. New J. Chem. 2014; 38: 827
    • 18b See also: Yi H, Jutand A, Lei A. Chem. Commun. 2015; 51: 545
  • 19 We recently showed that CsO-t-Bu was generated from LiO-t-Bu and CsF, which is a base for the deprotonative C–H carboxylation reaction, see reference 14f.
  • 20 For related single-electron transfer and fluoride mesolytic cleavage processes observed in photocatalysis and reactions using allylsilane with CsF and 18-crown-6, see references 3a, 3d, 3e, and 4c.

    • For the base-mediated β-elimination process of alkyl ethers, see:
    • 21a Letsinger RL, Pollart DF. J. Am. Chem. Soc. 1956; 78: 6079
    • 21b Maercker A. Angew. Chem., Int. Ed. Engl. 1987; 26: 972
  • 22 In the hydrolysis of 1a, 2-methylpropene was confirmed to be formed through gas chromatography (GC) analysis (Figure S2 in SI).
  • 23 When benzoyl fluoride and tert-butyl benzoate were reacted with LiO-t-Bu/CsF, followed by treatment with n-BuI, butyl benzoate (2i) was produced in 70% yield in both cases (Scheme S2).
  • 24 Recently, Dash et al. reported that KO-t-Bu mediates the hydration of benzonitrile to yield benzamide. They proposed that single-electron transfer occurs from KO-t-Bu onto benzonitrile through the potassium cation-nitrile π interaction, see: Midya GC, Kapat A, Maiti S, Dash J. J. Org. Chem. 2015; 80: 4148

    • tert-Butoxide forms aryl radical species from haloarenes via single-electron transfer process. For reviews, see:
    • 25a Yanagisawa S, Ueda K, Taniguchi T, Itami K. Org. Lett. 2008; 10: 4673
    • 25b Mehta VP, Punji B. RSC Adv. 2013; 3: 11957
    • 25c Shirakawa E, Hayashi T. Chem. Lett. 2012; 41: 130
    • 25d Chan TL, Wu Y, Choy PY, Kwong FY. Chem. Eur. J. 2013; 19: 15802
    • 25e See also reference 16 above.
  • 26 At this stage, we cannot exclude the possibility that the single-electron transfer to 1 might be assisted by some organic electron donor species formed in situ, see: Barham JP, Coulthard G, Emery KJ, Doni E, Cumine F, Nocera G, John MP, Berlouis LE. A, McGuire T, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2016; 138: 7402
  • 27 Liu L, Zhang Y, Xin B. J. Org. Chem. 2006; 71: 3994
  • 28 Papaianina O, Amsharov KY. Chem. Commun. 2016; 52: 1505
  • 29 Hoque ME, Hassan MM. M, Chattopadhyay B. J. Am. Chem. Soc. 2021; 143: 5022
  • 30 Cárdenas JC, Fadini L, Sierra CA. Tetrahedron Lett. 2010; 51: 6867
  • 31 Yang S.-D, Sun C.-L, Fang Z, Li B.-J, Li Y.-Z, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 1473
  • 32 Johansen MB, Lindhardt AT. Org. Biomol. Chem. 2020; 18: 1417
  • 33 Chen Q.-Y, Yang G.-Y, Wu S.-W. J. Fluorine Chem. 1991; 55: 291
  • 34 Music A, Baumann AN, Spieß P, Plantefol A, Jagau TC, Didier D. J. Am. Chem. Soc. 2020; 142: 4341
  • 35 Denmark SE, Smith RC, Chang W.-TT, Muhuhi JM. J. Am. Chem. Soc. 2009; 131: 3104
  • 36 Yang X, Wang Z.-X. Organometallics 2014; 33: 5863
  • 37 Huang Y, Fang X, Lin X, Li H, He W, Huang K.-W, Yuan Y, Weng Z. Tetrahedron 2012; 68: 9949
  • 38 Pauli L, Tannert R, Scheil R, Pfaltz A. Chem. Eur. J. 2015; 21: 1482
  • 39 Colletto C, Panigrahi A, Fernandez-Casado J, Larrosa I. J. Am. Chem. Soc. 2018; 140: 9638
  • 40 Lapointe D, Markiewicz T, Whipp CJ, Toderian A, Fagnou K. J. Org. Chem. 2011; 76: 749
  • 41 Hu W.-Q, Pan S, Xu X.-H, Vicic DA, Qing F.-L. Angew. Chem. Int. Ed. 2020; 59: 16076
  • 42 Xu X.-B, Liu J, Zhang J.-J, Wang Y.-W, Peng Y. Org. Lett. 2013; 15: 550
  • 43 Guo D, Shi W, Zou G. Adv. Synth. Catal. 2022; 364: 2438
  • 44 Malapit CA, Ichiishi N, Sanford MS. Org. Lett. 2017; 19: 4142
  • 45 Xiong B, Li Y, Wei Y, Kramer S, Lian Z. Org. Lett. 2020; 22: 6334
  • 46 Haensch VG, Neuwirth T, Steinmetzer J, Kloss F, Beckert R, Gräfe S, Kupfer S, Hertweck C. Chem. Eur. J. 2019; 25: 16068
  • 47 Amatore M, Gosmini C. Angew. Chem. Int. Ed. 2008; 47: 2089
  • 48 Ganesan V, Moon S, Yoon S. J. Org. Chem. 2023; 88: 5127
  • 49 Yadav MR, Nagaoka M, Kashihara M, Zhong R.-L, Miyazaki T, Sakaki S, Nakao Y. J. Am. Chem. Soc. 2017; 139: 9423
  • 50 Peng H, Zhang X, Papaefthimiou V, Pham-Huu C, Ritleng V. Green Chem. 2023; 25: 264
  • 51 Sonam, Shinde VN, Kumar A. J. Org. Chem. 2022; 87: 2651
  • 52 Whittaker AM, Dong VM. Angew. Chem. Int. Ed. 2015; 54: 1312
  • 53 Núñez-Villanueva D, Jinks MA, Magenti JG, Hunter CA. Chem. Commun. 2018; 54: 10874
  • 54 Li D, Tian Q, Wang X, Wang Q, Wang Y, Liao S, Xu P, Huang X, Yuan J. Synth. Commun. 2021; 51: 2041
  • 55 Liu Y.-X, Xue D, Wang J.-D, Zhao C.-J, Zou Q.-Z, Wang C, Xiao J. Synlett 2013; 24: 507
  • 56 Wang Z, Li Y, Yan B, Huang M, Wu Y. Synlett 2015; 26: 531
  • 57 Ishikura M, Terashima M. J. Org. Chem. 1994; 59: 2634
  • 58 Jia J, Jang Q, Zhao A, Xu B, Liu Q, Luo W.-P, Guo C.-C. Synthesis 2016; 48: 421
  • 59 Pandey G, Koley S, Talukdar R, Sahani PK. Org. Lett. 2018; 20: 5861
  • 60 Nishii Y, Akiyama S, Kita Y, Mashima K. Synlett 2015; 26: 1831