Synthesis 2024; 56(07): 1070-1096
DOI: 10.1055/a-2223-1303
short review
Emerging Trends in Glycoscience

Recent Advances on the Synthesis of C-Glycosides from 1,2-Glycals

Ramanand Das
a   Department of Chemistry, National Institute of Technology Sikkim, Ravangla, PIN 737139, India
,
Malati Das
a   Department of Chemistry, National Institute of Technology Sikkim, Ravangla, PIN 737139, India
,
Debaraj Mukherjee
b   Department of Chemical Sciences, Bose Institute, Kolkata, PIN 700091, India
,
Taraknath Kundu
a   Department of Chemistry, National Institute of Technology Sikkim, Ravangla, PIN 737139, India
› Author Affiliations
T.K. gratefully acknowledges the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, for grants received under project number SB/S1/OC-26/2014. The National Institute of Technology (NIT) Sikkim is acknowledged for providing fellowships to R.D. and M.D.


Abstract

The development of stereoselective synthetic routes for C-glycosides has attracted immense attention from carbohydrate chemists over the last two decades. In this short review, progress made over the last decade towards the synthesis of C-glycosides using glycals as precursors is discussed. Glycals have been extensively manipulated to generate oxocarbenium cations or glycosyl anions for the formation of C–C bonds at the anomeric position through attack of C-nucleophiles or via transition-metal-catalyzed coupling reactions. Recent reports on carbon-Ferrier, intramolecular Cope, and Claisen rearrangements, along with various coupling reactions in the presence or absence of directing groups are evaluated herein. Contemporary applications of these reactions in the syntheses of natural products, drugs and scaffolds with bioactive potential are briefly discussed.

1 Introduction

2 Rearrangement Reactions

2.1 Carbon-Ferrier Rearrangement

2.2 Other Rearrangement Reactions

3 C1 Coupling

4 Annulations

5 Addition Reactions

6 Natural Product Synthesis

7 Conclusion



Publication History

Received: 30 August 2023

Accepted after revision: 05 December 2023

Accepted Manuscript online:
05 December 2023

Article published online:
23 January 2024

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Recent Trends in Carbohydrate Chemistry: Synthesis, Structure and Function of Carbohydrates, Vol. 1. Rauter AP, Christensen BJ, Somsák L, Kosma P, Adamo R. Elsevier; Amsterdam: 2020
  • 2 Leclerc E, Pannecoucke X. Chem. Soc. Rev. 2013; 42: 4270
  • 3 Ernst B, Magnani JL. Nat. Rev. Drug Discovery 2009; 8: 661
  • 4 Wu C.-Y, Wong C.-H. Chem. Commun. 2011; 47: 6201
  • 5 Yang X, Fu B, Yu B. J. Am. Chem. Soc. 2011; 133: 12433
  • 6 Sharipova RR, Belenok MG, Garifullin BF, Sapunova AS, Voloshina AD, Andreeva OV, Strobykina IY, Skvortsova PV, Zuev YF, Kataev VE. MedChemComm 2019; 10: 1488
  • 7 Kharel MK, Pahari P, Shepherd MD, Tibrewal N, Nybo SE, Shaaban KA. Rohr, J. Nat. Prod. Rep. 2012; 29: 264
  • 8 Ma R, Cheng S, Sun J, Zhu W, Fu P. J. Nat. Prod. 2022; 85: 2282
  • 9 Danishefsky SJ, Shue YK, Chang MN, Wong CH. Acc. Chem. Res. 2015; 48: 643
  • 10 Rich JR, Wakarchuk WW, Bundle DR. Chem. Eur. J. 2006; 12: 845
  • 11 Liang Z, Li QX. ACS Chem. Neurosci. 2018; 9: 1166
  • 12 Guzzi C, Colombo L, De Luigi A, Salmona M, Nicotra F, Airoldi C. Chem. Asian J. 2017; 12: 67
  • 13 Capicciotti CJ, Leclère M, Perras FA, Bryce DL, Paulin H, Harden J, Liu Y, Ben RN. Chem. Sci. 2012; 3: 1408
  • 14 Vemula PK, John G. Acc. Chem. Res. 2008; 41: 769
  • 15 Levy DE, Tang C. The Chemistry of C-Glycosides . Elsevier; Oxford: 1995
  • 16 Chao EC, Henry RR. Nat. Rev. Drug Discovery 2010; 9: 551
  • 17 Wang XJ, Zhang L, Byrne D, Nummy L, Weber D, Krishnamurthy D, Yee N, Senanayake CH. Org. Lett. 2014; 16: 4090
  • 18 Henschke JP, Lin CW, Wu PY, Tsao WS, Liao JH, Chiang PC. J. Org. Chem. 2015; 80: 5189
  • 19 Aguillón AR, Mascarello A, Segretti ND, de Azevedo HF. Z, Guimaraes CR. W, Miranda LS. M, de Souza RO. M. A. Org. Process Res. Dev. 2018; 22: 467
  • 20 Leseurre L, Merea C, Duprat De Paule S, Pinchart A. Green Chem. 2014; 16: 1139
  • 21 Cavezza A, Boulle C, Guéguiniat A, Pichaud P, Trouille S, Ricard L, Dalko-Csiba M. Bioorg. Med. Chem. Lett. 2009; 19: 845
  • 22 He M, Min J.-W, Kong W.-L, He X.-H, Li J.-X, Peng B.-W. Fitoterapia 2016; 115: 74
  • 23 Zhang Y, Qi Z, Wang W, Wang L, Cao F, Zhao L, Fang X. Front. Pharmacol. 2021; 12: 630320 DOI: 10.3389/fphar.2021.630320.
  • 24 Lv J.-J, Wang Y.-F, Zhang J.-M, Yu S, Wang D, Zhu H.-T, Cheng R.-R, Yang C.-R, Xu M, Zhang Y.-J. Org. Biomol. Chem. 2014; 12: 8764
  • 25 Wong RW, Lingwood CA, Ostrowski MA, Cabral T, Cochrane A. Sci. Rep. 2018; 8: 850
  • 26 Guo S, Bao L, Li C, Sun J, Zhao R, Cui X. Sci. Rep. 2020; 10: 1897
  • 27 Tagousop CN, Tamokou J.-D, Ekom SE, Ngnokam D, Voutquenne-Nazabadioko L. BMC Complementary Altern. Med. 2018; 18: 252
  • 28 Reddy D, Kumavath R, Barh D, Azevedo V, Ghosh P. Molecules 2020; 25: 3596
  • 29 Yang Y, Yu B. Chem. Rev. 2017; 117: 12281
  • 30 Kitamura K, Ando Y, Matsumoto T, Suzuki K. Chem. Rev. 2018; 118: 1495
  • 31 Liu C.-F. Molecules 2022; 27: 7439
  • 32 Gou X.-Y, Zhu X.-Y, Zhang B.-S, Liang Y.-M. Chem. Eur. J. 2023; 29: e202203351
  • 33 Hussain N, Rasool F, Khan S, Saleem M, Maheshwari M. ChemistrySelect 2022; 7: e202201873
  • 34 Sangwan R, Mandal PK. RSC Adv. 2017; 7: 26256
  • 35 Xu LY, Fan NL, Hu XG. Org. Biomol. Chem. 2020; 18: 5095
  • 36 Matsuo B, Granados A, Majhi J, Sharique M, Levitre G, Molander GA. ACS Org. Inorg. Au 2022; 2: 435
  • 37 Chen A, Xu L, Zhou Z, Zhao S, Yang T, Zhu F. J. Carbohydr. Chem. 2021; 40: 361
  • 38 Ghosh T, Nokami T. Carbohydr. Res. 2022; 522: 108677
  • 39 Jiang Y, Zhang Y, Lee BC, Koh MJ. Angew. Chem. Int. Ed. 2023; 62: e202305138
  • 40 Nishikawa T, Adachi M, Isobe M. C-Glycosylation . In Glycoscience . Fraser-Reid BO, Tatsuta K, Thiem J. Springer-Verlag; Berlin/Heidelberg: 2008: 755
  • 41 Levy DE. Strategies Towards C-Glycosides . In The Organic Chemistry of Sugars . Levy DE, Fugedi P. CRC Press; Boca Raton: 2006. 269
  • 42 Györgydeak Z, Pelyvas IF. C-Glycosylation . In Glycoscience Chemistry and Chemical Biology I–III . Fraser-Reid BO, Tatsuta K, Thiem J. Springer-Verlag; Berlin/Heidelberg: 2001: 691
  • 43 Ansari AA, Lahiri R, Vankar YD. ARKIVOC 2013; (ii): 316
  • 44 Lalitha K, Muthusamy K, Prasad YS, Vemula PK, Nagarajan S. Carbohydr. Res. 2015; 402: 158
  • 45 Tatina MB, Hussain A, Dhas AK, Mukherjee D. RSC Adv. 2016; 6: 75960
  • 46 Miranda S, Gómez AM, López JC. Eur. J. Org. Chem. 2018; 5355
  • 47 Kinfe HH. Org. Biomol. Chem. 2019; 17: 4153
  • 48 Hussain N, Hussain A. RSC Adv. 2021; 11: 34369
  • 49 Guo Z, Bai J, Liu M, Xiong D, Ye X. Chin. J. Org. Chem. 2020; 40: 3094
  • 50 Ferrier RJ, Overend WG, Ryan AE. J. Chem. Soc. 1962; 3667
  • 51 Ansari AA, Reddy YS, Vankar YD. Beilstein J. Org. Chem. 2014; 10: 300
  • 52 Addanki RB, Halder S, Kancharla PK. Org. Lett. 2022; 24: 1465
  • 53 Reddy TR, Rao DS, Kashyap S. RSC Adv. 2015; 5: 28338
  • 54 Srinivas B, Reddy TR, Kashyap S. Carbohydr. Res. 2015; 406: 86
  • 55 Chen P, Zhang X. Tetrahedron Lett. 2017; 58: 309
  • 56 Rabet P, Wagschal S, Lemaire S. Synlett 2017; 28: 2320
  • 57 Jovanovic P, Petkovic M, Simic M, Jovanovic M, Tasic G, Crnogorac MD, Zizak Z, Savic V. Eur. J. Org. Chem. 2019; 4701
  • 58 Dash AK, Madhubabu T, Yousuf SK, Raina S, Mukherjee D. Carbohydr. Res. 2017; 438: 1
  • 59 Ma J, Xiang S, Jiang H, Liu XW. Eur. J. Org. Chem. 2015; 949
  • 60 Pal KB, Lee J, Das M, Liu XW. Org. Biomol. Chem. 2020; 18: 2242
  • 61 Dai Y, Tian B, Chen H, Zhang Q. ACS Catal. 2019; 9: 2909
  • 62 Lai M, Othman KA, Yao H, Wang Q, Feng Y, Huang N, Liu M, Zou K. Org. Lett. 2020; 22: 1144
  • 63 Rasool F, Mukherjee D. Org. Lett. 2017; 19: 4936
  • 64 Bai Y, Kim LM. H, Liao H, Liu XW. J. Org. Chem. 2013; 78: 8821
  • 65 Hosseyni S, Smith CA, Shi X. Org. Lett. 2016; 18: 6336
  • 66 Kusunuru AK, Tatina M, Yousuf SK, Mukherjee D. Chem. Commun. 2013; 49: 10154
  • 67 Han P.-R, Liu J, Liao J.-X, Tu Y.-H, Sun J.-S. J. Org. Chem. 2020; 85: 11449
  • 68 Kusunuru AK, Yousuf SK, Tatina M, Mukherjee D. Eur. J. Org. Chem. 2015; 459
  • 69 Huang N, Liao H, Yao H, Xie T, Zhang S, Zou K, Liu XW. Org. Lett. 2018; 20: 16
  • 70 Liao H, Leng W.-L, Le Mai Hoang K, Yao H, He J, Voo AY. H, Liu X.-W. Chem. Sci. 2017; 8: 6656
  • 71 Zeng J, Ma J, Xiang S, Cai S, Liu XW. Angew. Chem. Int. Ed. 2013; 52: 5134
  • 72 Leng WL, Liao H, Yao H, Ang ZE, Xiang S, Liu XW. Org. Lett. 2017; 19: 416
  • 73 Shi WZ, Li H, Mu GC, Lu JL, Tu YH, Hu XG. Org. Lett. 2021; 23: 2659
  • 74 Bayer M, Bächle F, Ziegler T. J. Carbohydr. Chem. 2018; 37: 347
  • 75 Parkan K, Pohl R, Kotora M. Chem. Eur. J. 2014; 20: 4414
  • 76 Bai Y, Leng WL, Li Y, Liu XW. Chem. Commun. 2014; 50: 13391
  • 77 de Robichon M, Bordessa A, Malinowski M, Uziel J, Lubin-Germain N, Ferry A. Chem. Commun. 2019; 55: 11806
  • 78 de Robichon M, Branquet D, Uziel J, Lubin-Germain N, Ferry A. Adv. Synth. Catal. 2021; 363: 5138
  • 79 Dubey A, Chauhan NS, Azeem Z, Mandal PK. Adv. Synth. Catal. 2023; 365: 820
  • 80 Liu M, Niu Y, Wu YF, Ye XS. Org. Lett. 2016; 18: 1836
  • 81 Zhang S, Niu YH, Ye XS. Org. Lett. 2017; 19: 3608
  • 82 Liu Y, Wang Y, Dai W, Huang W, Li Y, Liu H. Angew. Chem. Int. Ed. 2020; 59: 3491
  • 83 Gong L, Sun HB, Deng LF, Zhang X, Liu J, Yang S, Niu D. J. Am. Chem. Soc. 2019; 141: 7680
  • 84 Yu C, Liu Y, Xie X, Hu S, Zhang S, Zeng M, Zhang D, Wang J, Liu H. Adv. Synth. Catal. 2021; 363: 4926
  • 85 Reddy GM, Maheswara Rao BU, Sridhar PR. J. Org. Chem. 2016; 81: 2782
  • 86 Xiang S, Cai S, Zeng J, Liu XW. Org. Lett. 2011; 13: 4608
  • 87 Rasool B, Zargar IA, Hussain N, Mukherjee D. Chem. Commun. 2023; 59: 9090
  • 88 Wang S, Chen K, Guo F, Zhu W, Liu C, Dong H, Yu JQ, Lei X. ACS Cent. Sci. 2023; 9: 1129
  • 89 Singh AK, Kanaujiya VK, Tiwari V, Sabiah S, Kandasamy J. Org. Lett. 2020; 22: 7650
  • 90 Kumar Singh A, Venkatesh R, Kumar Kanaujiya V, Tiwari V, Kandasamy J. Eur. J. Org. Chem. 2022; e202200023
  • 91 Tao Y, Ding N, Ren S, Li Y. Tetrahedron Lett. 2013; 54: 6101
  • 92 Oroszova B, Choutka J, Pohl R, Parkan K. Chem. Eur. J. 2015; 21: 7043
  • 93 Singh AK, Venkatesh R, Kandasamy J. Synthesis 2019; 51: 4215
  • 94 Singh AK, Kandasamy J. Org. Biomol. Chem. 2018; 16: 5107
  • 95 Tang S, Zheng Q, Xiong DC, Jiang S, Li Q, Ye XS. Org. Lett. 2018; 20: 3079
  • 96 Moshapo PT, Sokamisa M, Mmutlane EM, Mampa RM, Kinfe HH. Org. Biomol. Chem. 2016; 14: 5627
  • 97 Liu J, Han P, Liao JX, Tu YH, Zhou H, Sun JS. J. Org. Chem. 2019; 84: 9344
  • 98 Dubbu S, Verma AK, Parasuraman K, Vankar YD. Carbohydr. Res. 2018; 465: 29
  • 99 Bhardwaj M, Rasool B, Mukherjee D. Chem. Commun. 2022; 58: 7038
  • 100 Xiao X, Han P, Wan J, Liu J. Org. Lett. 2023; 25: 7170
  • 101 Kusunuru AK, Jaladanki CK, Tatina MB, Bharatam PV, Mukherjee D. Org. Lett. 2015; 17: 3742
  • 102 Sakamoto K, Nagai M, Ebe Y, Yorimitsu H, Nishimura T. ACS Catal. 2019; 9: 1347
  • 103 Mora Flores EW, Uhrig ML, Postigo A. Org. Biomol. Chem. 2020; 18: 8724
  • 104 Zhu W, Sun Q, Chang H, Zhang HX, Wang Q, Chen G, He G. Chin. J. Chem. 2022; 40: 571
  • 105 Mu Q.-Q, Guo A.-X, Cai X, Qin Y.-Y, Liu X.-L, Ye F.-Z, Yang H.-J, Xiao X, Liu X.-W. Org. Lett. 2023; 25: 7040
  • 106 Delaunay T, Poisson T, Jubault P, Pannecoucke X. J. Fluorine Chem. 2015; 171: 56
  • 107 Bouwman S, Orru RV. A, Ruijter E. Org. Biomol. Chem. 2015; 13: 1317
  • 108 Trefzer A, Hoffmeister D, Künzel E, Stockert S, Weitnauer G, Westrich L, Rix U, Fuchser J, Bindseil KU, Rohr J. Chem. Biol. 2000; 7: 133
  • 109 Khatri HR, Nguyen H, Dunaway JK, Zhu J. Chem. Eur. J. 2015; 21: 13553
  • 110 Lu S, Sun P, Li T, Kurtán T, Mándi A, Antus S, Krohn K, Draeger S, Schulz B, Yi Y, Li L, Zhang W. J. Org. Chem. 2011; 76: 9699
  • 111 Radha Krishna P, Nomula R, Venkata Ramana D. Tetrahedron Lett. 2012; 53: 3612
  • 112 Pazó M, Zúñiga A, Pérez M, Gómez G, Fall Y. Tetrahedron Lett. 2015; 56: 3774
  • 113 Maurer B, Grieder A, Thommen W. Helv. Chim. Acta 1979; 62: 44
  • 114 Larrosa I, Romea P, Urpí F. Tetrahedron 2008; 64: 2683
  • 115 Clarke PA, Santos S. Eur. J. Org. Chem. 2006; 2045
  • 116 Kang EJ, Lee E. Chem. Rev. 2005; 105: 4348
  • 117 Garrido F, Santalla H, Gómez G, Fall Y. MOJ Bioorg. Org. Chem. 2020; 4: 7
  • 118 Ghosh AK, Reddy GC, MacRae AJ, Jurica MS. Org. Lett. 2018; 20: 96
  • 119 He H, Ratnayake AS, Janso JE, He M, Yang HY, Loganzo F, Shor B, O’Donnell CJ, Koehn FE. J. Nat. Prod. 2014; 77: 1864