Planta Med 2023; 89(04): 353-363
DOI: 10.1055/a-1948-3179
Biological and Pharmacological Activity
Reviews

The Therapeutic Potential of Salidroside for Parkinsonʼs Disease

Li Li
1   Department of Physiology, Hubei University of Chinese Medicine, Wuhan, China
,
Wenlong Yao
2   Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
› Author Affiliations
Supported by: the Science and Technology Research Project of Hubei Provincial Department of Education Q20162004

Abstract

Parkinsonʼs disease (PD), a neurological disorder, is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. Its incidence increases with age. Salidroside, a phenolic compound extracted from Sedum roseum, reportedly has multiple biological and pharmacological activities in the nervous system. However, its effects on PD remain unclear. In this review, we summarize the effects of salidroside on PD with regard to DA metabolism, neuronal protection, and glial activation. In addition, we summarize the susceptibility genes and their underlying mechanisms related to antioxidation, inflammation, and autophagy by regulating mitochondrial function, ubiquitin, and multiple signaling pathways involving NF-κB, mTOR, and PI3K/Akt. Although recent studies were based on animal and cellular experiments, this review provides evidence for further clinical utilization of salidroside for PD.



Publication History

Received: 25 May 2022

Accepted after revision: 21 September 2022

Accepted Manuscript online:
21 September 2022

Article published online:
21 November 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kalia LV, Lang AE. Parkinsonʼs disease. Lancet 2015; 386: 896-912
  • 2 Rai SN, Tiwari N, Singh P, Mishra D, Singh AK, Hooshmandi E, Vamanu E, Singh MP. Therapeutic potential of vital transcription factors in Alzheimerʼs and Parkinsonʼs disease with particular emphasis on transcription factor EB mediated autophagy. Front Neurosci 2021; 15: 777347
  • 3 Rai SN, Singh P, Varshney R, Chaturvedi VK, Vamanu E, Singh MP, Singh BK. Promising drug targets and associated therapeutic interventions in Parkinsonʼs disease. Neural Regen Res 2021; 16: 1730-1739
  • 4 Rai SN, Chaturvedi VK, Singh P, Singh BK, Singh MP. Mucuna pruriens in Parkinsonʼs and in some other diseases: Recent advancement and future prospective. 3 Biotech 2020; 10: 522
  • 5 Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinsonʼs disease. J Chem Neuroanat 2020; 104: 101752
  • 6 Driver JA, Logroscino G, Gaziano JM, Kurth T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology 2009; 72: 432-438
  • 7 Sharma V, Bedi O, Gupta M, Deshmukh R. A review: traditional herbs and remedies impacting pathogenesis of Parkinsonʼs disease. Naunyn Schmiedebergs Arch Pharmacol 2022; 395: 495-513
  • 8 Pu WL, Zhang MY, Bai RY, Sun LK, Li WH, Yu YL, Zhang Y, Song L, Wang ZX, Peng YF, Shi H, Zhou K, Li TX. Anti-inflammatory effects of rhodiola rosea l.: A review. Biomed Pharmacother 2020; 121: 109552
  • 9 Cai H, Wang J, Mo Y, Ye L, Zhu G, Song X, Zhu M, Xue X, Yang C, Jin M. Salidroside suppresses group 2 innate lymphoid cell-mediated allergic airway inflammation by targeting IL-33/ST2 axis. Int Immunopharmacol 2020; 81: 106243
  • 10 Xie Z, Lu H, Yang S, Zeng Y, Li W, Wang L, Luo G, Fang F, Zeng T, Cheng W. Salidroside attenuates cognitive dysfunction in senescence-accelerated mouse prone 8 (SAMP8) mice and modulates inflammation of the gut-brain axis. Front Pharmacol 2020; 11: 568423
  • 11 Tian Z, Li Y, Wang G, Wang J, Zhang Y. Therapeutic effects of salidroside on cognitive ability in rats with experimental vascular dementia. Bull Exp Biol Med 2020; 169: 35-39
  • 12 Hao W, Li N, Mi C, Wang Q, Yu Y. Salidroside attenuates cardiac dysfunction in a rat model of diabetes. Diabet Med 2022; 39: e14683
  • 13 Jin P, Li LH, Shi Y, Hu NB. Salidroside inhibits apoptosis and autophagy of cardiomyocyte by regulation of circular RNA hsa_circ_0000064 in cardiac ischemia-reperfusion injury. Gene 2021; 767: 145075
  • 14 Zhang X, Zhang Y, Li R, Zhu L, Fu B, Yan T. Salidroside ameliorates Parkinsonʼs disease by inhibiting NLRP3-dependent pyroptosis. Aging (Albany NY) 2020; 12: 9405-9426
  • 15 Li T, Zhang W, Kang X, Yang R, Li R, Huang L, Chen J, Yang Q, Sun X. Salidroside protects dopaminergic neurons by regulating the mitochondrial MEF2D-ND6 pathway in the MPTP/MPP(+) -induced model of Parkinsonʼs disease. J Neurochem 2020; 153: 276-289
  • 16 Zhou F, Ju J, Fang Y, Fan X, Yan S, Wang Q, Wei P, Duan F, Miao F, Hu Z, Wang M. Salidroside protected against MPP(+) -induced Parkinsonʼs disease in PC12 cells by inhibiting inflammation, oxidative stress and cell apoptosis. Biotechnol Appl Biochem 2019; 66: 247-253
  • 17 Ravenstijn PG, Drenth HJ, OʼNeill MJ, Danhof M, de Lange EC. Evaluation of blood-brain barrier transport and CNS drug metabolism in diseased and control brain after intravenous L-DOPA in a unilateral rat model of Parkinsonʼs disease. Fluids Barriers CNS 2012; 9: 4
  • 18 Liu X, Wen S, Yan F, Liu K, Liu L, Wang L, Zhao S, Ji X. Salidroside provides neuroprotection by modulating microglial polarization after cerebral ischemia. J Neuroinflammation 2018; 15: 39
  • 19 Dong C, Wen S, Zhao S, Sun S, Zhao S, Dong W, Han P, Chen Q, Gong T, Chen W, Liu W, Liu X. Salidroside inhibits reactive astrogliosis and glial scar formation in late cerebral ischemia via the Akt/GSK-3β pathway. Neurochem Res 2021; 46: 755-769
  • 20 Zhang X, Lai W, Ying X, Xu L, Chu K, Brown J, Chen L, Hong G. Salidroside reduces inflammation and brain injury after permanent middle cerebral artery occlusion in rats by regulating PI3K/PKB/Nrf2/NFκB signaling rather than complement C3 activity. Inflammation 2019; 42: 1830-1842
  • 21 Chen SF, Tsai HJ, Hung TH, Chen CC, Lee CY, Wu CH, Wang PY, Liao NC. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS One 2012; 7: e45763
  • 22 Zhang Y, Li L, Lin L, Liu J, Zhang Z, Xu D, Xiang F. Pharmacokinetics, tissue distribution, and excretion of salidroside in rats. Planta Med 2013; 79: 1429-1433
  • 23 Guo N, Zhu M, Han X, Sui D, Wang Y, Yang Q. The metabolism of salidroside to its aglycone p-tyrosol in rats following the administration of salidroside. PLoS One 2014; 9: e103648
  • 24 Barhwal K, Das SK, Kumar A, Hota SK, Srivastava RB. Insulin receptor A and Sirtuin 1 synergistically improve learning and spatial memory following chronic salidroside treatment during hypoxia. J Neurochem 2015; 135: 332-346
  • 25 Zhu L, Chen T, Chang X, Zhou R, Luo F, Liu J, Zhang K, Wang Y, Yang Y, Long H, Liu Y, Yan T, Ma C. Salidroside ameliorates arthritis-induced brain cognition deficits by regulating Rho/ROCK/NF-κB pathway. Neuropharmacology 2016; 103: 134-142
  • 26 Lin X, Yu H, Tan C, Zhang L, Cao G. Radioiodine-labeling of salidroside and its biodistribution in mice. Nuclear Techniques 2006; 29: 913-916
  • 27 Wang S, He H, Chen L, Zhang W, Zhang X, Chen J. Protective effects of salidroside in the MPTP/MPP(+)-induced model of Parkinsonʼs disease through ROS-NO-related mitochondrion pathway. Mol Neurobiol 2015; 51: 718-728
  • 28 Wang C, Lou Y, Xu J, Feng Z, Chen Y, Tang Q, Wang Q, Jin H, Wu Y, Tian N, Zhou Y, Xu H, Zhang X. Endoplasmic reticulum stress and NF-κB pathway in salidroside mediated neuroprotection: Potential of salidroside in neurodegenerative diseases. Am J Chin Med 2017; 45: 1459-1475
  • 29 Chen S, Cai F, Wang J, Yang Z, Gu C, Wang G, Mao G, Yan J. Salidroside protects SH-SY5Y from pathogenic α-synuclein by promoting cell autophagy via mediation of mTOR/p70S6K signaling. Mol Med Rep 2019; 20: 529-538
  • 30 Bao X, Wu H. Study on pharmacokinetics and tissue distribution characteristics of salidroside in mice. Zhongguo Zhong Yao Za Zhi 2020; 45: 4466-4471
  • 31 Huang J, Zhao D, Cui C, Hao J, Zhang Z, Guo L. Research progress and trends of phenylethanoid glycoside delivery systems. Foods 2022; 11: 769
  • 32 Janowsky A, Vocci F, Berger P, Angel I, Zelnik N, Kleinman JE, Skolnick P, Paul SM. [3H]GBR-12935 binding to the dopamine transporter is decreased in the caudate nucleus in Parkinsonʼs disease. J Neurochem 1987; 49: 617-621
  • 33 Pimoule C, Schoemaker H, Javoy-Agid F, Scatton B, Agid Y, Langer SZ. Decrease in [3H]cocaine binding to the dopamine transporter in Parkinsonʼs disease. Eur J Pharmacol 1983; 95: 145-146
  • 34 Zhang W, He H, Song H, Zhao J, Li T, Wu L, Zhang X, Chen J. Neuroprotective effects of salidroside in the MPTP mouse model of Parkinsonʼs disease: Involvement of the PI3K/Akt/GSK3β pathway. Parkinsons Dis 2016; 2016: 9450137
  • 35 Li R, Chen J. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy. Oxid Med Cell Longev 2019; 2019: 9341018
  • 36 Zhong ZF, Han J, Zhang JZ, Xiao Q, Chen JY, Zhang K, Hu J, Chen LD. Neuroprotective effects of salidroside on cerebral ischemia/reperfusion-induced behavioral impairment involves the dopaminergic system. Front Pharmacol 2019; 10: 1433
  • 37 Yang Z, Huang X, Lai W, Tang Y, Liu J, Wang Y, Chu K, Brown J, Hong G. Synthesis and identification of a novel derivative of salidroside as a selective, competitive inhibitor of monoamine oxidase B with enhanced neuroprotective properties. Eur J Med Chem 2021; 209: 112935
  • 38 Hisahara S, Shimohama S. Dopamine receptors and Parkinsonʼs disease. Int J Med Chem 2011; 2011: 403039
  • 39 Kaasinen V, Vahlberg T, Stoessl AJ, Strafella AP, Antonini A. Dopamine receptors in Parkinsonʼs disease: A meta-analysis of imaging studies. Mov Disord 2021; 36: 1781-1791
  • 40 Rite I, Arguelles S, Venero JL, Garcia-Rodriguez S, Ayala A, Cano J, Machado A. Proteomic identification of biomarkers in the cerebrospinal fluid in a rat model of nigrostriatal dopaminergic degeneration. J Neurosci Res 2007; 85: 3607-3618
  • 41 Postuma RB, Gagnon JF, Montplaisir J. Clinical prediction of Parkinsonʼs disease: Planning for the age of neuroprotection. J Neurol Neurosurg Psychiatry 2010; 81: 1008-1013
  • 42 Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 2009; 7: 99-109
  • 43 Tao K, Wang B, Feng D, Zhang W, Lu F, Lai J, Huang L, Nie T, Yang Q. Salidroside protects against 6-hydroxydopamine-induced cytotoxicity by attenuating ER stress. Neurosci Bull 2016; 32: 61-69
  • 44 Zhao HB, Ma H, Ha XQ, Zheng P, Li XY, Zhang M, Dong JZ, Yang YS. Salidroside induces rat mesenchymal stem cells to differentiate into dopaminergic neurons. Cell Biol Int 2014; 38: 462-471
  • 45 Takahashi S, Mashima K. Neuroprotection and disease modification by astrocytes and microglia in Parkinson disease. Antioxidants (Basel) 2022; 11: 170
  • 46 Choudhury ME, Kigami Y, Tanaka J. Dual roles of microglia in the basal ganglia in Parkinsonʼs disease. Int J Mol Sci 2021; 22: 3907
  • 47 Forno LS, DeLanney LE, Irwin I, Di Monte D, Langston JW. Astrocytes and Parkinsonʼs disease. Prog Brain Res 1992; 94: 429-436
  • 48 Braak H, Sastre M, Del Tredici K. Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinsonʼs disease. Acta Neuropathol 2007; 114: 231-241
  • 49 Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H. NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinsonʼs disease brains. Acta Neuropathol 2000; 99: 14-20
  • 50 Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 2010; 285: 9262-9272
  • 51 Chen C, Mossman E, Malko P, McDonald D, Blain AP, Bone L, Erskine D, Filby A, Vincent AE, Hudson G, Reeve AK. Astrocytic changes in mitochondrial oxidative phosphorylation protein levels in Parkinsonʼs disease. Mov Disord 2022; 37: 302-314
  • 52 Mao GX, Deng HB, Yuan LG, Li DD, Li YY, Wang Z. Protective role of salidroside against aging in a mouse model induced by D-galactose. Biomed Environ Sci 2010; 23: 161-166
  • 53 Maadawi ZME. Conditioned medium derived from salidroside-pretreated mesenchymal stem cell culture ameliorates mouse lipopolysaccharide-induced cerebral neuroinflammation- histological and immunohistochemical study. Int J Stem Cells 2017; 10: 60-68
  • 54 Karakaya S, Kipp M, Beyer C. Oestrogen regulates the expression and function of dopamine transporters in astrocytes of the nigrostriatal system. J Neuroendocrinol 2007; 19: 682-690
  • 55 Tong J, Rathitharan G, Meyer JH, Furukawa Y, Ang LC, Boileau I, Guttman M, Hornykiewicz O, Kish SJ. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders. Brain 2017; 140: 2460-2474
  • 56 Escartin C, Galea E, Lakatos A, OʼCallaghan JP, Petzold GC, Serrano-Pozo A, Steinhauser C, Volterra A, Carmignoto G, Agarwal A, Allen NJ, Araque A, Barbeito L, Barzilai A, Bergles DE, Bonvento G, Butt AM, Chen WT, Cohen-Salmon M, Cunningham C, Deneen B, De Strooper B, Diaz-Castro B, Farina C, Freeman M, Gallo V, Goldman JE, Goldman SA, Gotz M, Gutierrez A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M, Kastanenka KV, Kettenmann H, Khakh BS, Koizumi S, Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Messing A, Mishra A, Molofsky AV, Murai KK, Norris CM, Okada S, Oliet SHR, Oliveira JF, Panatier A, Parpura V, Pekna M, Pekny M, Pellerin L, Perea G, Perez-Nievas BG, Pfrieger FW, Poskanzer KE, Quintana FJ, Ransohoff RM, Riquelme-Perez M, Robel S, Rose CR, Rothstein JD, Rouach N, Rowitch DH, Semyanov A, Sirko S, Sontheimer H, Swanson RA, Vitorica J, Wanner IB, Wood LB, Wu J, Zheng B, Zimmer ER, Zorec R, Sofroniew MV, Verkhratsky A. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 2021; 24: 312-325
  • 57 Wang G, Zhou Y, Wang Y, Li D, Liu J, Zhang F. Age-associated dopaminergic neuron loss and midbrain glia cell phenotypic polarization. Neuroscience 2019; 415: 89-96
  • 58 Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, Kwon SH, Park YJ, Karuppagounder SS, Park H, Kim S, Oh N, Kim NA, Lee S, Brahmachari S, Mao X, Lee JH, Kumar M, An D, Kang SU, Lee Y, Lee KC, Na DH, Kim D, Lee SH, Roschke VV, Liddelow SA, Mari Z, Barres BA, Dawson VL, Lee S, Dawson TM, Ko HS. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinsonʼs disease. Nat Med 2018; 24: 931-938
  • 59 Du RW, Bu WG. Simvastatin prevents neurodegeneration in the MPTP mouse model of Parkinsonʼs disease via inhibition of A1 reactive astrocytes. Neuroimmunomodulation 2021; 28: 82-89
  • 60 Fujita A, Yamaguchi H, Yamasaki R, Cui Y, Matsuoka Y, Yamada KI, Kira JI. Connexin 30 deficiency attenuates A2 astrocyte responses and induces severe neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride Parkinsonʼs disease animal model. J Neuroinflammation 2018; 15: 227
  • 61 Su Y, Zong S, Wei C, Song F, Feng H, Qin A, Lian Z, Fu F, Shao S, Fang F, Wu T, Xu J, Liu Q, Zhao J. Salidroside promotes rat spinal cord injury recovery by inhibiting inflammatory cytokine expression and NF-κB and MAPK signaling pathways. J Cell Physiol 2019; 234: 14259-14269
  • 62 Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA. Genomic analysis of reactive astrogliosis. J Neurosci 2012; 32: 6391-6410
  • 63 Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541: 481-487
  • 64 Hammond SL, Bantle CM, Popichak KA, Wright KA, Thompson D, Forero C, Kirkley KS, Damale PU, Chong EKP, Tjalkens RB. NF-κB signaling in astrocytes modulates brain inflammation and neuronal injury following sequential exposure to manganese and MPTP during development and aging. Toxicol Sci 2020; 177: 506-520
  • 65 Jin Y, Yao Y, El-Ashram S, Tian J, Shen J, Ji Y. The neurotropic parasite Toxoplasma gondii induces astrocyte polarization through NFκB pathway. Front Med (Lausanne) 2019; 6: 267
  • 66 Wang Y, Su Y, Lai W, Huang X, Chu K, Brown J, Hong G. Salidroside restores an anti-inflammatory endothelial phenotype by selectively inhibiting endothelial complement after oxidative stress. Inflammation 2020; 43: 310-325
  • 67 King A, Szekely B, Calapkulu E, Ali H, Rios F, Jones S, Troakes C. The increased densities, but different distributions, of both C3 and S100A10 immunopositive astrocyte-like cells in Alzheimerʼs disease brains suggest possible roles for both A1 and A2 astrocytes in the disease pathogenesis. Brain Sci 2020; 10: 503
  • 68 Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinsonʼs disease. Neurobiol Dis 2006; 21: 404-412
  • 69 Iannaccone S, Cerami C, Alessio M, Garibotto V, Panzacchi A, Olivieri S, Gelsomino G, Moresco RM, Perani D. In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinsonʼs disease. Parkinsonism Relat Disord 2013; 19: 47-52
  • 70 Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinsonʼs disease brains. Acta Neuropathol 2003; 106: 518-526
  • 71 Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinsonʼs disease. Neurosci Lett 1994; 172: 151-154
  • 72 Wang C, Wang Q, Lou Y, Xu J, Feng Z, Chen Y, Tang Q, Zheng G, Zhang Z, Wu Y, Tian N, Zhou Y, Xu H, Zhang X. Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. J Cell Mol Med 2018; 22: 1148-1166
  • 73 Zhang H, Wu J, Shen FF, Yuan YS, Li X, Ji P, Zhu L, Sun L, Ding J, Niu Q, Zhang KZ. Activated schwann cells and increased inflammatory cytokines IL-1β, IL-6, and TNF-α in patientsʼ sural nerve are lack of tight relationship with specific sensory disturbances in Parkinsonʼs disease. CNS Neurosci Ther 2020; 26: 518-526
  • 74 Kanda T, Tsukagoshi H, Oda M, Miyamoto K, Tanabe H. Changes of unmyelinated nerve fibers in sural nerve in amyotrophic lateral sclerosis, Parkinsonʼs disease and multiple system atrophy. Acta Neuropathol 1996; 91: 145-154
  • 75 Zhang H, Zhu L, Sun L, Zhi Y, Ding J, Yuan YS, Shen FF, Li X, Ji P, Wang Z, Niu Q, Zhang KZ. Phosphorylated α-synuclein deposits in sural nerve deriving from Schwann cells: A biomarker for Parkinsonʼs disease. Parkinsonism Relat Disord 2019; 60: 57-63
  • 76 Xia Y, Jiang C, Cao Z, Shi K, Wang Y. Co-transplantation of macaque autologous Schwann cells and human embryonic nerve stem cells in treatment of macaque Parkinsonʼs disease. Asian Pac J Trop Med 2012; 5: 7-14
  • 77 Timmer M, Muller-Ostermeyer F, Kloth V, Winkler C, Grothe C, Nikkhah G. Enhanced survival, reinnervation, and functional recovery of intrastriatal dopamine grafts co-transplanted with Schwann cells overexpressing high molecular weight FGF-2 isoforms. Exp Neurol 2004; 187: 118-136
  • 78 van Horne CG, Quintero JE, Gurwell JA, Wagner RP, Slevin JT, Gerhardt GA. Implantation of autologous peripheral nerve grafts into the substantia nigra of subjects with idiopathic Parkinsonʼs disease treated with bilateral STN DBS: a report of safety and feasibility. J Neurosurg 2017; 126: 1140-1147
  • 79 van Horne CG, Quintero JE, Slevin JT, Anderson-Mooney A, Gurwell JA, Welleford AS, Lamm JR, Wagner RP, Gerhardt GA. Peripheral nerve grafts implanted into the substantia nigra in patients with Parkinsonʼs disease during deep brain stimulation surgery: 1-year follow-up study of safety, feasibility, and clinical outcome. J Neurosurg 2018; 129: 1550-1561
  • 80 Lu Z, Jiang G, Chen Y, Wang J, Muhammad I, Zhang L, Wang R, Liu F, Li R, Qian F, Li J. Salidroside attenuates colistin-induced neurotoxicity in RSC96 Schwann cells through PI3K/Akt pathway. Chem Biol Interact 2017; 271: 67-78
  • 81 Liu H, Lv P, Zhu Y, Wu H, Zhang K, Xu F, Zheng L, Zhao J. Salidroside promotes peripheral nerve regeneration based on tissue engineering strategy using Schwann cells and PLGA: in vitro and in vivo . Sci Rep 2017; 7: 39869
  • 82 Li J, Zhang Y, Yang Z, Zhang J, Lin R, Luo D. Salidroside promotes sciatic nerve regeneration following combined application epimysium conduit and Schwann cells in rats. Exp Biol Med (Maywood) 2020; 245: 522-531
  • 83 Lill CM. Genetics of Parkinsonʼs disease. Mol Cell Probes 2016; 30: 386-396
  • 84 Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE. Parkinson disease. Nat Rev Dis Primers 2017; 3: 17013
  • 85 Li W, Fu Y, Halliday GM, Sue CM. PARK genes link mitochondrial dysfunction and alpha-synuclein pathology in sporadic Parkinsonʼs disease. Front Cell Dev Biol 2021; 9: 612476
  • 86 Lesage S, Brice A. Parkinsonʼs disease: From monogenic forms to genetic susceptibility factors. Hum Mol Genet 2009; 18: R48-R59
  • 87 Li T, Feng Y, Yang R, Wu L, Li R, Huang L, Yang Q, Chen J. Salidroside promotes the pathological α-synuclein clearance through ubiquitin-proteasome system in SH-SY5Y cells. Front Pharmacol 2018; 9: 377
  • 88 Li R, Wang S, Li T, Wu L, Fang Y, Feng Y, Zhang L, Chen J, Wang X. Salidroside protects dopaminergic neurons by preserving complex I activity via DJ-1/Nrf2-mediated antioxidant pathway. Parkinsons Dis 2019; 2019: 6073496
  • 89 Wu L, Xu H, Cao L, Li T, Li R, Feng Y, Chen J, Ma J. Salidroside protects against MPP+-induced neuronal injury through DJ-1-Nrf2 antioxidant pathway. Evid Based Complement Alternat Med 2017; 2017: 5398542
  • 90 Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinsonʼs disease. Nat Genet 1998; 18: 106-108
  • 91 Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the alpha-synuclein gene identified in families with Parkinsonʼs disease. Science 1997; 276: 2045-2047
  • 92 Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 1998; 4: 1318-1320
  • 93 Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: Implications for neurodegenerative disorders. Science 2000; 287: 1265-1269
  • 94 Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Masliah E, Levine MS, Chesselet MF. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 2004; 24: 9434-9440
  • 95 Melrose HL, Lincoln SJ, Tyndall GM, Farrer MJ. Parkinsonʼs disease: A rethink of rodent models. Exp Brain Res 2006; 173: 196-204
  • 96 Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T. alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 2002; 4: 160-164
  • 97 Koentjoro B, Park JS, Sue CM. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinsonʼs disease. Sci Rep 2017; 7: 44373
  • 98 Bonello F, Hassoun SM, Mouton-Liger F, Shin YS, Muscat A, Tesson C, Lesage S, Beart PM, Brice A, Krupp J, Corvol JC, Corti O. LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinsonʼs disease. Hum Mol Genet 2019; 28: 1645-1660
  • 99 Matsuda S, Kitagishi Y, Kobayashi M. Function and characteristics of PINK1 in mitochondria. Oxid Med Cell Longev 2013; 2013: 601587
  • 100 Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen F, Gu Y, Hasegawa H, Salehi-Rad S, Wang L, Rogaeva E, Fraser P, Robinson B, St George-Hyslop P, Tandon A. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 2005; 280: 34025-34032
  • 101 Deng H, Jankovic J, Guo Y, Xie W, Le W. Small interfering RNA targeting the PINK1 induces apoptosis in dopaminergic cells SH-SY5Y. Biochem Biophys Res Commun 2005; 337: 1133-1138
  • 102 Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin . Nature 2006; 441: 1162-1166
  • 103 Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin . Nature 2006; 441: 1157-1161
  • 104 Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF, Vogel H, Lu B. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 2006; 103: 10793-10798
  • 105 Tang B, Xiong H, Sun P, Zhang Y, Wang D, Hu Z, Zhu Z, Ma H, Pan Q, Xia JH, Xia K, Zhang Z. Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinsonʼs disease. Hum Mol Genet 2006; 15: 1816-1825
  • 106 Ozawa K, Tsumoto H, Miura Y, Yamaguchi J, Iguchi-Ariga SMM, Sakuma T, Yamamoto T, Uchiyama Y. DJ-1 is indispensable for the S-nitrosylation of Parkin, which maintains function of mitochondria. Sci Rep 2020; 10: 4377
  • 107 Thomas KJ, McCoy MK, Blackinton J, Beilina A, van der Brug M, Sandebring A, Miller D, Maric D, Cedazo-Minguez A, Cookson MR. DJ-1 acts in parallel to the PINK1/Parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet 2011; 20: 40-50
  • 108 Xu CY, Kang WY, Chen YM, Jiang TF, Zhang J, Zhang LN, Ding JQ, Liu J, Chen SD. DJ-1 inhibits α-synuclein aggregation by regulating chaperone-mediated autophagy. Front Aging Neurosci 2017; 9: 308
  • 109 Shendelman S, Jonason A, Martinat C, Leete T, Abeliovich A. DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol 2004; 2: e362
  • 110 Panossian A, Hamm R, Wikman G, Efferth T. Mechanism of action of rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: an interactive pathway analysis of the downstream effects using RNA microarray data. Phytomedicine 2014; 21: 1325-1348
  • 111 Zhang H, Shen WS, Gao CH, Deng LC, Shen D. Protective effects of salidroside on epirubicin-induced early left ventricular regional systolic dysfunction in patients with breast cancer. Drugs R D 2012; 12: 101-106
  • 112 Zhou Y, Liu Y, Wu L, Gu Y, Wei G, Li Q, Xia Y, Liu W, Si D. Study on metabolic pathways of salidroside in rats. Chinese Traditional and Herbal Drugs 2018; 49: 1603-1611
  • 113 Parkinson Study Group CALM Cohort Investigators. Long-term effect of initiating pramipexole vs. levodopa in early Parkinson disease. Arch Neurol 2009; 66: 563-570
  • 114 Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE, Abdalla M, Study G. Development of dyskinesias in a 5-year trial of ropinirole and L-dopa. Mov Disord 2006; 21: 1844-1850