Synthesis 2020; 52(23): 3530-3548
DOI: 10.1055/s-0040-1707208
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Synthesis and Applications of 2-Arylbenzothiazoles

Fuqiang Gan
a   Department of Obstetrics and Gynecology, Jiangxi Provincial People’s Hospital, 92 Aiguo Road, Nanchang, Jiangxi 330006, P. R. of China   eMail: luopuying1979@126.com
,
Puying Luo
a   Department of Obstetrics and Gynecology, Jiangxi Provincial People’s Hospital, 92 Aiguo Road, Nanchang, Jiangxi 330006, P. R. of China   eMail: luopuying1979@126.com
,
Junyue Lin
b   Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. of China
c   College of Chemistry & Chemical Engineering, Jinganshan University, Xueyuan Road, Ji’an, Jiangxi 343009, P. R. of China
,
Qiuping Ding
b   Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. of China
› Institutsangaben
Financial support from the National Natural Science Foundation of China (21662017, 21961016), and Jiangxi Health and Family Planning Commission Project (20161015) is gratefully acknowledged.
Weitere Informationen

Publikationsverlauf

Received: 19. Mai 2020

Accepted after revision: 15. Juni 2020

Publikationsdatum:
05. August 2020 (online)


Abstract

This review firstly covers the applications of 2-arylbenzothiazoles as amyloid imaging agents, antitumor agents, and organic luminescent materials. Then we review the recent advances in the synthesis of 2-arylbenzothiazole derivatives. On the one hand, we introduce the approaches for construction of the 2-arylbenzothiazole core, including the following categories: (i) classic condensation of 2-aminothiophenols, (ii) direct arylation of benzothiazoles, (iii) intramolecular cyclization of thiobenzanilides, and (iv) tandem cyclization of anilines/ nitroarenes­ with elemental sulfur or sulfides. On the other hand, the transition-metal-catalyzed direct C–H functionalizations of 2-aryl­benzothiazoles are also involved in this review.

1 Introduction

2 Applications of 2-Arylbenzothiazoles

3 Construction of the 2-Arylbenzothiazole Core

4 Synthesis 2-Arylbenzothiazoles via Direct C–H Functionalization

5 Conclusion

 
  • References

    • 1a Weekes AA, Westwell AD. Cur. Med. Chem. 2009; 16: 2430
    • 1b Sharma PC, Sinhmar A, Sharma A, Rajak H, Pathak DP. J. Enzyme Inhib. Med. Chem. 2013; 28: 240
    • 1c Noël S, Cadet S, Gras E, Hureau C. Chem. Soc. Rev. 2013; 42: 7747
    • 1d Liu X, Dong Z.-B. Eur. J. Org. Chem. 2020; 408
    • 2a Viles JH. Coord. Chem. Rev. 2012; 256: 2271
    • 2b Valensin D, Gabbiani C, Messori L. Coord. Chem. Rev. 2012; 19–20: 2357
  • 3 See: Biancalana M, Koide S. Biochim. Biophys. Acta 2010; 1804: 1405 ; and references therein
  • 4 Mathis CA, Wang Y, Holt DP, Huang G.-F, Debnath ML, Klunk WE. J. Med. Chem. 2003; 46: 2740
  • 5 Cui M, Ono M, Kimura H, Ueda M, Nakamoto Y, Togashi K, Okamoto Y, Ihara M, Takahashi R, Liu B, Saji H. J. Med. Chem. 2012; 55: 9136
  • 6 Pan J, Mason NS, Debnath ML, Mathis CA, Klunk WE, Lin KS. Bioorg. Med. Chem. Lett. 2013; 23: 1720
  • 7 Jia J, Cui M, Dai J, Wang X, Ding Y.-S, Jia H, Liu B. Med. Chem. Commun. 2014; 5: 153
  • 8 Jia J, Zhou K, Dai J, Liu B, Cui M. Eur. J. Med. Chem. 2016; 124: 763
  • 9 Zhang X, Yu P, Yang Y, Hou Y, Peng C, Liang Z, Lu J, Chen B, Dai J, Liu B, Cui M. Bioconjugate Chem. 2016; 27: 2493
  • 10 Shi D.-F, Bradshaw TD, Wrigley S, Mccall CJ, Lelieveld P, Fichtner I, Stevens MF. G. J. Med. Chem. 1996; 39: 3375
  • 11 Shi D.-F, Bradshaw TD, Chua MS, Westwell AD, Stevens MF. G. Bioorg. Med. Chem. Lett. 2001; 11: 1093
    • 12a Hutchinson I, Chua MS, Browne HL, Trapani V, Bradshaw TD, Westwell AD, Stevens MF. G. J. Med. Chem. 2001; 44: 1446
    • 12b Leong CO, Gaskell M, Martin EA, Heydon RT, Farmer PB, Bibby MC, Cooper PA, Double JA, Bradshaw TD, Stevens MF. G. Br. J. Cancer 2003; 88: 470
  • 13 Hutchinson I, Jennings SA, Vishnuvajjala BR, Westwell AD, Stevens MF. J. Med. Chem. 2002; 45: 744
  • 14 Hutchinson I, Bradshaw TD, Matthews CS, Stevens MF, Westwell AD. Bioorg. Med. Chem. Lett. 2003; 13: 471
  • 15 Choi SJ, Park HJ, Lee SK, Kim SW, Han G, Choo H.-Y. Bioorg. Med. Chem. 2006; 14: 1229
  • 16 Mortimer CG, Wells G, Crochard JP, Stone EL, Bradshaw TD, Stevens MF, Westwell AD. J. Med. Chem. 2006; 49: 179
  • 17 Aiello S, Wells G, Stone EL, Kadri H, Bazzi R, Bell DR, Stevens MF. G, Matthews CS, Bradshaw TD, Westwell AD. J. Med. Chem. 2008; 51: 5135
  • 18 Racané L, Kralj M, Suman L, Stojkovic R, Tralic-Kulenovic V, Karminski-Zamola G. Bioorg. Med. Chem. 2010; 18: 1038
  • 19 Gupta SD, Moorthy NS. H .N, Sanyal U. Int. J. Pharm. Pharm. Sci. 2010; 2 (03) 57
  • 20 Katkova MA, Balashova TV, Ilichev VA, Konev AN, Isachenkov NA, Fukin GK, Ketkov SY, Bochkarev MN. Inorg. Chem. 2010; 49: 5094
  • 21 Santra M, Roy B, Ahn KH. Org. Lett. 2011; 13: 3422
  • 22 Liu L, Tan C, Fan R, Wang Z, Du H, Xu K, Tan J. Org. Biomol. Chem. 2019; 17: 252
  • 23 Pesyan NN, Batmani H, Havasi F. Polyhedron 2019; 158: 248
  • 24 Bahrami K, Bakhtiarian M. ChemistrySelect 2018; 3: 10875
  • 25 Fan L.-Y, Shang Y.-H, Li X.-X, Hua W.-J. Chin. Chem. Lett. 2015; 26: 77
  • 26 Banerjee S, Payra S, Saha A, Sereda G. Tetrahedron Lett. 2014; 55: 5515
  • 27 Wang J, Zhang XZ, Chen SY, Yu XQ. Tetrahedron 2014; 70: 245
  • 28 Hua M, Wang CQ, Liu QX, Chen DY, Fu H, Zhou HF. Heterocycles 2018; 96: 1226
  • 29 Khemnar AB, Bhanage BM. RSC Adv. 2014; 4: 8939
  • 30 Ghashang M. Res. Chem. Intermed. 2014; 40: 1669
  • 31 Srinivasulu R, Kumar KR, Satyanarayana PV. V, Babu BH. J. Appl. Chem. 2014; 2: 5
  • 32 Singh Digwal C, Yadav U, Sakla AP, Sri Ramya PV, Aaghaz S, Kamal A. Tetrahedron Lett. 2016; 57: 4012
  • 33 Naeimi H, Heidarnezhad A. J. Sulfur Chem. 2014; 35: 493
  • 34 Shaikh KA, Chaudhar UN. Org. Commun. 2017; 10: 288
  • 35 Zeng H, Luo P, Luo M, Ding H, Ding Q. Tetrahedron 2019; 75: 130472
  • 36 Liao Y, Qi H, Chen S, Jiang P, Zhou W, Deng G.-J. Org. Lett. 2012; 14: 6004
  • 37 Das K, Mondal A, Srimani D. Chem. Commun. 2018; 54: 10582
  • 38 Sun Y, Jiang H, Wu W, Zeng W, Wu X. Org. Lett. 2013; 15: 1598
    • 39a Pivsa-Art S, Satoh T, Kawamura Y, Miura M, Nomura M. Bull. Chem. Soc. Jpn. 1998; 71: 467
    • 39b Huang J, Chan J, Chen Y, Borths CJ, Baucom KD, Larsen RD, Faul MM. J. Am. Chem. Soc. 2010; 132: 3674
    • 39c Tamba S, Okubo Y, Tanaka S, Monguchi D, Mori A. J. Org. Chem. 2010; 75: 6998
  • 40 Do H.-Q, Daugulis O. J. Am. Chem. Soc. 2007; 129: 12404
  • 41 Lewis JC, Berman AM, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2008; 130: 2493
  • 42 Canivet J, Yamaguchi J, Ban I, Itami K. Org. Lett. 2009; 11: 1733
  • 43 Yang F, Koeller J, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 4759
  • 44 Ranjit S, Liu X. Chem. Eur. J. 2011; 17: 1105
    • 45a Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 169
    • 45b Matsushita K, Takise R, Hisada T, Suzuki S, Isshiki R, Itami K, Muto K, Yamaguchi J. Chem. Asian J. 2018; 13: 2393
  • 46 Xie K, Yang Z, Zhou X, Li X, Wang S, Tan Z, An X, Guo C.-C. Org. Lett. 2010; 12: 1564
  • 47 Song Q, Feng Q, Zhou M. Org. Lett. 2013; 15: 5990
  • 48 Evindar G, Batey RA. J. Org. Chem. 2006; 71: 1802
    • 49a Inamoto K, Hasegawa C, Hiroya K, Doi T. Org. Lett. 2008; 10: 5147
    • 49b Inamoto K, Hasegawa C, Kawasaki J, Hiroya K, Doi T. Adv. Synth. Catal. 2010; 352: 2643
  • 50 Inamoto K, Nozawa K, Kondo Y. Synlett 2012; 23: 1678
  • 51 Wang H, Wang L, Shang J, Li X, Wang H, Gui J, Lei A. Chem. Commun. 2012; 48: 76
  • 52 Rey V, Soria-Castro SM, Argüello JE, Peñéñory AB. Tetrahedron Lett. 2009; 50: 4720
  • 53 Cheng Y, Yang J, Qu Y, Li P. Org. Lett. 2012; 14: 98
  • 54 Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J.-X, Wu L.-Z, Lei A. J. Am. Chem. Soc. 2015; 137: 9273
  • 55 Xu Z.-M, Li H.-X, Young DJ, Zhu D.-L, Li H.-Y, Lang J.-P. Org. Lett. 2019; 21: 237
  • 56 Zhang LF, Ni ZH, Li DY, Qin ZH, Wei XY. Chin. Chem. Lett. 2012; 23: 281
  • 57 Deng H, Li Z, Ke F, Zhou X. Chem. Eur. J. 2012; 18: 4840
  • 58 Nguyen TB, Ermolenko L, Al-Mourabit A. Org. Lett. 2013; 15: 4218
  • 59 Nguyen TB, Ermolenko L, Retailleau P, Al-Mourabit A. Angew. Chem. Int. Ed. 2014; 53: 13808
  • 60 Guntreddi T, Vanjari R, Singh KN. Org. Lett. 2015; 17: 976
  • 61 Nguyen LA, Ngo QA, Retailleau P, Nguyen TB. Green Chem. 2017; 19: 4289
    • 62a Chen X, Jiang J, Xiao F, Huang H, Deng G.-J. Org. Lett. 2017; 19: 4576
    • 62b Xu Z, Huang H, Chen H, Deng G.-J. Org. Chem. Front. 2019; 6: 3060
  • 63 Xing Q, Ma Y, Xie H, Xiao F, Zhang F, Deng G.-J. J. Org. Chem. 2019; 84: 1238
  • 64 Itoh T, Mase T. Org. Lett. 2007; 9: 3687
  • 65 Prasad DJ. C, Sekar G. Org. Biomol. Chem. 2013; 11: 1659
  • 66 Ma D, Xie S, Xue P, Zhang X, Dong J, Jiang Y. Angew. Chem. Int. Ed. 2009; 48: 4222
  • 67 Park N, Heo Y, Kumar MR, Kim Y, Song KH, Lee S. Eur. J. Org. Chem. 2012; 1984
  • 68 Zhang X, Zeng W, Yang Y, Huang H, Liang Y. Org. Lett. 2014; 16: 876
  • 69 Dey A, Hajra A. Org. Lett. 2019; 21: 1686
  • 70 Yu W, Wu W, Jiang H. Chin. J. Chem. 2019; 37: 1158
  • 71 Banerjee A, Bera A, Guin S, Rout SK, Patel BK. Tetrahedron 2013; 69: 2175
  • 72 Seth K, Nautiyal M, Purohit P, Parikh N, Chakraborti AK. Chem. Commun. 2015; 51: 191
  • 73 Shah SS, Paul A, Bera M, Venkatesh Y, Singh ND. P. Org. Lett. 2018; 20: 5533
  • 74 Ping Y, Chen Z, Ding Q, Peng Y. Synthesis 2017; 49: 2015
  • 75 Choi M, Park J, Mishra NK, Lee S.-Y, Kim JH, Jeong KM, Lee J, Jung YH, Kim IS. Tetrahedron Lett. 2015; 56: 4678
  • 76 Ding Q, Ji H, Wang D, Lin Y, Yu W, Peng Y. J. Organomet. Chem. 2012; 711: 62
  • 77 Ding Q, Ji H, Nie Z, Yang Q, Peng Y. J. Organomet. Chem. 2013; 739: 33
    • 78a Banerjee A, Santra SK, Guin S, Rout SK, Patel BK. Eur. J. Org. Chem. 2013; 1367
    • 78b Wang J, Nie Z, Li Y, Tan S, Jiang J, Jiang P, Ding Q. J. Chem. Res. 2013; 263
  • 79 Zheng Y, Song W.-B, Zhang S.-W, Xuan L.-J. Tetrahedron 2015; 71: 1574
  • 80 Ding Q, Ye C, Pu S, Cao B. Tetrahedron 2014; 70: 409
  • 81 Ding Q, Zhou X, Pu S, Cao B. Tetrahedron 2015; 71: 2376
  • 82 Zhou X, Luo P, Long L, Ouyang M, Sang X, Ding Q. Tetrahedron 2014; 70: 6742
  • 83 Luo P, Ding Q, Ping Y, Hu J. Org. Biomol. Chem. 2016; 14: 2924
  • 84 Ping Y, Ding Q, Chen Z, Peng Y. J. Organomet. Chem. 2016; 815–816: 59
  • 85 Ping Y, Chen Z, Ding Q, Zheng Q, Lin Y, Peng Y. Tetrahedron 2017; 73: 594
  • 86 Qiao H.-J, Yang F, Wang S.-W, Leng Y.-T, Wu Y.-J. Tetrahedron 2015; 71: 9258
  • 87 Liu D, Luo P, Ge J, Jiang Z, Peng Y, Ding Q. J. Org. Chem. 2019; 84: 12784
  • 88 Liu D, Ding Q, Fu Y, Song Z, Peng Y. Org. Lett. 2019; 21: 2523