Synthesis 2014; 46(19): 2585-2590
DOI: 10.1055/s-0034-1378346
paper
© Georg Thieme Verlag Stuttgart · New York

ipso-Iodocyclization of para-Substituted 4-Aryl-1-alkenes Leading to 3-Iodo-1-azaspiro[4.5]deca-6,9-diene-2,8-diones

Cui-Yan Wu
a   College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. of China
b   Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, P. R. of China   Fax: +86(731)88713642   Email: jhli@hnu.edu.cn
,
Guo-Bo Deng
a   College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. of China
,
Ming Hu
a   College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. of China
,
Wen-Ting Wei
a   College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. of China
,
Jin-Heng Li*
a   College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 07 April 2014

Accepted after revision: 28 May 2014

Publication Date:
08 July 2014 (online)


Abstract

A new, mild route for the assembly of 3-iodo-1-azaspiro[4.5]deca-6,9-diene-2,8-diones via an electrophilic ipso-cyclization strategy is presented. In the presence of iodine monochloride, water, and sodium bicarbonate, a variety of N-arylacrylamides underwent the intramolecular electrophilic ipso-cyclization reaction to afford the corresponding 3-iodo-1-azaspiro[4.5]deca-6,9-diene-2,8-diones in moderate to good yield.

Supporting Information

 
  • References

    • 1a Heathcock CH, Graham SL, Pirrung MC, Plavac F, White CT In The Total Synthesis of Natural Products . Vol. 5. Apsimon J. Wiley-Interscience; New York: 1983: 264
    • 1b Yoneda K, Yamagata E, Nakanishi T, Nagashima T, Kawasaki I, Yoshida T, Mori H, Miura I. Phytochemistry 1984; 23: 2068
    • 1c Sakamoto K, Tsujii E, Abe F, Nakanishi T, Yamashita M, Shigematsu N, Izumi S, Okuhara M. J. Antibiot. 1996; 49: 37
    • 1d Biard JF, Guyot S, Roussakis C, Verbist JF, Vercauteren J, Weber JF, Boukef K. Tetrahedron Lett. 1994; 35: 2691
    • 1e Blackman AJ, Li C, Hockless DC. R, Skelton BW, White AH. Tetrahedron 1993; 49: 8645
    • 1f Du Y, Lu X. J. Org. Chem. 2003; 68: 6463 ; and references cited therein
    • 1g Amagata T, Minoura K, Numata A. J. Nat. Prod. 2006; 69: 1384
    • 1h Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 1i Chawla AS, Kapoor VK In The Alkaloids: Chemical and Biological Perspectives . Vol. 9. Pelletier SW. Pergamon; New York: 1995: 86
    • 1j Tsuda Y, Sano T In The Alkaloids . Vol. 48. Cordell GA. Academic Press; San Diego: 1996: 249
    • 1k Cha JY, Huang Y, Pettus TR. R. Angew. Chem. Int. Ed. 2009; 48: 9519
    • 2a Kende AS, Koch K. Tetrahedron Lett. 1986; 27: 6051
    • 2b Miranda LD, Zard SZ. Org. Lett. 2002; 4: 1135
    • 2c Chikaoka S, Toyao A, Ogasawara M, Tamura O, Ishibashi H. J. Org. Chem. 2003; 68: 312
    • 2d Inui M, Nakazaki A, Kobayashi S. Org. Lett. 2007; 9: 469
    • 2e Gonzalez-Lopez de Turiso F, Curran DP. Org. Lett. 2005; 7: 151
    • 2f Lanza T, Leardini R, Minozzi M, Nanni D, Spagnolo P, Zanardi G. Angew. Chem. Int. Ed. 2008; 47: 9439
    • 3a Gajewski RP. Tetrahedron Lett. 1976; 4125
    • 3b Kawashima T, Naganuma K, Okazaki R. Organometallics 1998; 17: 367
    • 3c Wardrop DJ, Basak A. Org. Lett. 2001; 3: 1053
    • 3d Miyazawa E, Sakamoto T, Kikugawa Y. J. Org. Chem. 2003; 68: 5429
    • 3e Kikugawa Y, Nagashima A, Sakamoto T, Miyazawa E, Shiiya M. J. Org. Chem. 2003; 68: 6739
    • 3f Wardrop DJ, Landrie CL, Ortíz JA. Synlett 2003; 1352
    • 3g Wardrop DJ, Burge MS. J. Org. Chem. 2005; 70: 10271
    • 3h Dohi T, Maruyama A, Minamitsuji Y, Takenaga N, Kita Y. Chem. Commun. 2007; 1224
    • 3i Zhdankin VV, Stang PJ. Chem. Rev. 2002; 102: 2523
    • 3j Wardrop DJ, Zhang W. Org. Lett. 2001; 3: 2353
    • 3k Allin SM, Streetley GB, Slater M, James SL, Martin WP. Tetrahedron Lett. 2004; 45: 5493
    • 3l Allin SM, James SL, Elsegood MR. J, Martin WP. J. Org. Chem. 2002; 67: 9464
    • 3m Padwa A, Lee HI, Rashatasakhon P, Rose M. J. Org. Chem. 2004; 69: 8209
    • 3n Katritzky AR, He H.-Y, Jiang R. Tetrahedron Lett. 2002; 43: 2831
    • 3o Magnus P, Gallagher T, Brown P, Pappalardo P. Acc. Chem. Res. 1984; 17: 35
    • 3p Gallagher T, Magnus P, Huffman JC. J. Am. Chem. Soc. 1983; 105: 4750
    • 3q Desmaële D, d’Angelo J. J. Org. Chem. 1994; 59: 2292
    • 3r Nakazaki A, Kobayashi S. Synlett 2009; 1605
    • 4a Rigby JH, Hughes RC, Heeg MJ. J. Am. Chem. Soc. 1995; 117: 7834
    • 4b Rigby JH, Deur C, Heeg MJ. Tetrahedron Lett. 1999; 40: 6887
    • 4c Kim G, Kim JH, Lee KY. J. Org. Chem. 2006; 71: 2185
    • 4d Mori M, Kuroda S, Zhang C, Sato Y. J. Org. Chem. 1997; 62: 3263
    • 4e Uesaka N, Saitoh F, Mori M, Shibasaki M, Okamura K, Date T. J. Org. Chem. 1994; 59: 5633
    • 4f Takano S, Inomata K, Ogasawara K. Chem. Lett. 1992; 443
    • 4g Pigge FC, Coniglio JJ, Rath NP. Org. Lett. 2003; 5: 2011
    • 4h Pigge FC, Coniglio JJ, Rath NP. Organometallics 2005; 24: 5424
    • 4i Pigge FC, Coniglio JJ, Dalvi R. J. Am. Chem. Soc. 2006; 128: 3498
    • 4j Pigge FC, Dhanya R, Swenson DC. Organometallics 2009; 28: 3869
    • 4k Haack RA, Beck KR. Tetrahedron Lett. 1989; 30: 1605
    • 4l Nagao Y, Lee WS, Jeong I.-Y, Shiro M. Tetrahedron Lett. 1995; 36: 2799
    • 4m Boyle FT, Hares O, Matusiak ZS, Li W, Whiting DA. J. Chem. Soc., Perkin Trans. 1 1997; 2707
    • 4n Blay G, Cardona L, Collado AM, García B, Morcillo V, Pedro JR. J. Org. Chem. 2004; 69: 7294
    • 4o Pearson AJ, Wang X, Dorange IB. Org. Lett. 2004; 6: 2535
    • 5a Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn. 1971; 44: 581
    • 5b Heck RF, Nolley JP. Jr. J. Org. Chem. 1972; 37: 2320
    • 5c The Mizoroki-Heck Reaction . Oestreich M. Wiley; Chichester: 2009

      For reviews, see:
    • 7a Larock RC In Acetylene Chemistry . Diederich F, Stang PJ, Tykwinski RR. Wiley–VCH; Weinheim: 2005: 51
    • 7b Luo P, Tang R, Zhong P, Li J. Chin. J. Org. Chem. 2009; 29: 1924
    • 7c Snyder SA, Treitler DS, Brucks AP. Aldrichimica Acta 2011; 44: 27
    • 8a Appel TR, Yehia NA. M, Baumeister U, Hartung H, Kluge R, Ströhl D, Fanghänel E. Eur. J. Org. Chem. 2003; 47
    • 8b Zhang X, Larock RC. J. Am. Chem. Soc. 2005; 127: 12230
    • 8c Li C.-W, Wang C.-I, Liao H.-Y, Chaudhuri R, Liu R.-S. J. Org. Chem. 2007; 72: 9203
    • 8d Okitsu T, Nakazawa D, Kobayashi A, Mizohata M, In Y, Ishida T, Wada A. Synlett 2010; 203
    • 8e Tang B.-X, Yin Q, Tang R.-Y, Li J.-H. J. Org. Chem. 2008; 73: 9008
    • 8f Yu Q.-F, Zhang Y.-H, Yin Q, Tang B.-X, Tang R.-Y, Zhong P, Li J.-H. J. Org. Chem. 2008; 73: 3658
    • 8g Tang B.-X, Tang D.-J, Tang S, Yu Q.-F, Zhang Y.-H, Liang Y, Zhong P, Li J.-H. Org. Lett. 2008; 10: 1063
    • 8h Wang Z.-Q, Tang B.-X, Zhang H.-P, Wang F, Li J.-H. Synthesis 2009; 891
    • 8i Tang B.-X, Zhang Y.-H, Song R.-J, Tang D.-J, Deng G.-B, Wang Z.-Q, Xie Y.-X, Xia Y.-Z, Li J.-H. J. Org. Chem. 2012; 77: 2837
    • 9a Liu L, Lu H, Wang H, Yang C, Zhang X, Zhang-Negrerie D, Du Y, Zhao K. Org. Lett. 2013; 15: 2906
    • 9b Hirsch-Weil D, Abboud KA, Hong S. Chem. Commun. 2010; 46: 7525
    • 9c Pathan RU, Agarkar SV. Res. J. Chem. Sci. 2014; 5: 56