Synthesis 2012; 44(24): 3783-3788
DOI: 10.1055/s-0032-1317682
paper
© Georg Thieme Verlag Stuttgart · New York

Novel Synthesis of 4,5-Unsubstituted 2,3-Dihydroisoxazoles from 5-Acetoxyisoxazolidines

Róbert Fischer*
Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, 812 37 Bratislava, Slovak Republic   Email: robert.fischer@stuba.sk
,
Daniela Lackovičová
Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, 812 37 Bratislava, Slovak Republic   Email: robert.fischer@stuba.sk
,
Lubor Fišera
Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, 812 37 Bratislava, Slovak Republic   Email: robert.fischer@stuba.sk
› Author Affiliations
Further Information

Publication History

Received: 18 September 2012

Accepted after revision: 31 October 2012

Publication Date:
27 November 2012 (online)


Abstract

A new synthetic method for the preparation of 4,5-unsubstituted 2,3-dihydroisoxazoles from readily available 5-acetoxyisoxazolidines is presented. Elimination reactions are carried out in anhydrous N-methylpyrrolidin-2-one (NMP) with a catalytic amount of trimethylsilyl triflate in the presence of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and provide the 2,3-dihydroisoxazoles in very good yields. The nature of the silylating agent plays a very important role in elimination process. Anhydrous reaction conditions are required, while trimethylsilanol, the product of trimethylsilyl triflate and N,O-bis(trimethylsilyl)trifluoroacetamide hydrolysis, can initiate reactions leading to deacetylation, giving side products and thus decreasing the total yield of the elimination.

 
  • References

    • 1a Freeman JP. Chem. Rev. 1983; 83: 241
    • 1b Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2010; 3363
    • 1c Chukanov NV, Reznikov VA. Russ. Chem. Bull. 2011; 60: 379
    • 2a Dhavale DD, Trombini C. J. Chem. Soc., Chem. Commun. 1992; 1268
    • 2b Camiletti Ch, Dhavale DD, Gentilucci L, Trombini C. J. Chem. Soc., Perkin Trans. 1 1993; 3157
  • 3 Koizumi T, Hirai H, Yoshii E. J. Org. Chem. 1982; 47: 4005
  • 4 Keirs D, Moffat D, Overton K, Tomanek R. J. Chem. Soc., Perkin Trans. 1 1991; 1041
  • 5 Ishikawa T, Kudoh T, Yoshida J, Yasuhara A, Manabe S, Saito S. Org. Lett. 2002; 4: 1907
  • 6 Hýrošová E, Medvecký M, Fišera L, Hametner C, Fröhlich J, Marchetti M, Allmaier G. Tetrahedron 2008; 64: 3111
  • 7 Chiacchio U, Gumina G, Rescifina A, Romeo R, Uccella N, Casuscelli F, Piperno A, Romeo G. Tetrahedron 1996; 52: 8889
  • 8 Merino P, Del Alamo EM, Franco S, Merchan FL, Simon A, Tejero T. Tetrahedron: Asymmetry 2000; 11: 1543
  • 9 Fischer R, Drucková A, Fišera L, Hametner C. ARKIVOC 2002; (viii): 80
    • 10a Luisier S, Leumann CJ. ChemBioChem 2008; 9: 2244
    • 10b Šilhár P, Leumann CJ. Bioorg. Med. Chem. 2010; 18: 7786
  • 11 Vorbrüggen H, Ruh-Pohlenz C. Org. React. 2000; 55: 1-630
    • 12a Ochoa C, Provensio R, Jimeno ML, Balzarini J, De Clercq E. Nucleosides Nucleotides 1998; 17: 901
    • 12b Liao J, Sun J, Yu B. Tetrahedron Lett. 2008; 49: 5036
  • 13 Selected NMR data for 16: 1H NMR (300 MHz, CDCl3): δ = 2.35 (m, 2 H, H4), 2.45 (s, 3 H, COCH3), 3.87 (m, 1 H, H3), 6.25 (m, 1 H, H5); 13C NMR (75 MHz, CDCl3): δ = 24.0 (COCH3) and 172.0 (NHCOCH3).
  • 15 Nguyen TB, Martel A, Dhal R, Dujardin G. J. Org. Chem. 2008; 73: 2621