Planta Med 2009; 75(15): 1618-1624
DOI: 10.1055/s-0029-1185808
Biochemistry, Molecular Biology and Biotechnology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Changes of Gentiopicroside Synthesis during Somatic Embryogenesis in Gentiana macrophylla

Li-Yu Chen1 [*] , Qian-Liang Chen1 [*] , Dan Xu1 , Jian-Guo Hao1 , Michael Schläppi2 , Zi-Qin Xu1
  • 1Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Life Science, Northwest University, Xi'an, Shaanxi, People's Republic of China
  • 2Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
Further Information

Publication History

received February 19, 2009 revised April 13, 2009

accepted May 17, 2009

Publication Date:
22 June 2009 (online)

Abstract

In vitro plant regeneration of Gentiana macrophylla Pall. and determination of gentiopicroside content during somatic embryogenesis are described in the present work. The highest percentage of embryogenic callus formation was observed in Murashige and Skoog (MS) medium supplemented with 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg/L 6-benzylaminopurine (BA). Calli were subcultured on MS medium containing 1.0 mg/L 2,4-D, 1.0 mg/L BA and 500 mg/L lactalbumin hydrolysate (LH) at intervals of 25 days. A higher frequency of somatic embryo maturation was achieved on MS medium containing B5 vitamins (MB) supplemented with different concentrations of 1-naphthaleneacetic acid (NAA) and BA than with a combination of NAA and kinetin (KT). Addition of AgNO3 improved maturation of somatic embryos while thidiazuron (TDZ) promoted vitrification. The gentiopicroside contents of embryogenic calli and globular-, heart-, torpedo-, and cotyledon-shaped embryoids were determined by high-performance liquid chromatography (HPLC). Gentiopicroside was not detectable in embryogenic calli, but in all types of somatic embryos. The highest gentiopicroside content was observed in cotyledon-shaped embryoids, reaching more than 12 mg/g dry weight.

References

  • 1 Chen L, Liu J C, Zhang X N, Guo Y Y, Xu Z H, Cao W, Sun X L, Sun W J, Zhao M G. Down-regulation of NR2B receptors partially contributes to analgesic effects of gentiopicroside in persistent inflammatory pain.  Neuropharmacology. 2008;  54 1175-1181
  • 2 Kondo Y, Takano F, Hojo H. Suppression of chemically and immunologically induced hepatic injuries by gentiopicroside in mice.  Planta Med. 1994;  60 414-416
  • 3 Tan R X, Wolfender J L, Zhang L X, Ma W G, Fuzzati N, Marston A, Hostettmann K. Acyl secoiridoids and antifungal constituents from Gentiana macrophylla.  Phytochemistry. 1996;  42 1305-1313
  • 4 Piatczak E, Krolicka A, Wysokinska H. Genetic transformation of Centaurium erythraea Rafn by Agrobacterium rhizogenes and the production of secoiridoids.  Plant Cell Rep. 2006;  25 1308-1315
  • 5 Tiwari R K, Trivedi M, Guang Z C, Guo G-Q, Zheng G-C. Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures.  Plant Cell Rep. 2007;  26 199-210
  • 6 Mikula A, Rybczynski J J. Somatic embryogenesis of Gentiana genus I. The effect of the preculture treatment and primary explant origin on somatic embryogenesis of Gentiana cruciata (L.), G. pannonica (Scop.), and G. tibetica (King).  Acta Physiol Plant. 2001;  21 15-25
  • 7 Mikula A, Skierski J, Rybczynski J J. Somatic embryogenesis of Gentiana genus. III. Characterization of three-year-old embryogenic suspensions of G. pannonica originated from various seedling explants.  Acta Physiol Plant. 2002;  24 311-322
  • 8 Sharma N, Chandel K PS, Paul A. In vitro propagation of Gentiana kurroo – an indigenous threatened plant of medicinal importance.  Plant Cell Tissue Org. 1993;  34 307-309
  • 9 Semeniuk P, Griesbach R J. In vitro propagation of prairie gentian.  Plant Cell Tissue Org. 1987;  8 249-253
  • 10 Meng Y, Gao Y, Jia J. Plant regeneration from protoplasts isolated from callus of Gentiana crassicaulis.  Plant Cell Rep. 1996;  16 88-91
  • 11 Chueh F, Chen C, Sagare A P, Tsay H. Quantitative determination of secoiridoid glucosides in in vitro propagated plants of Gentiana davidii var. formosana by high performance liquid chromatography.  Planta Med. 2001;  67 70-73
  • 12 Sabovljevic A, Rosic N, Jankovic T, Grubisic D. Secoiridoid content of Blackstonia perfoliata in vivo and in vitro.  In Vitro Cell Dev Biol Plant. 2006;  42 427-431
  • 13 Chen L Y, Xu Z Q. Somatic embryogenesis pathway for plant regeneration in Qinjiao (Gentiana macrophylla Pall.).  J Mol Cell Biol. 2007;  40 267-271
  • 14 Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures.  Physiol Plant. 1962;  15 473-497
  • 15 Gamborg O L, Millar R A, Ojiama K K. Nutrient requirements of suspension cultures of soybean root cells.  Exp Cell Res. 1968;  50 148-151
  • 16 Marchant R, Davey M R, Lucas J A, Power J B. Somatic embryogenesis and plant regeneration in Floribunda rose (Rosa hybrida L.) cvs. Trumpeter and Glad Tidings.  Plant Sci. 1996;  120 95-105
  • 17 Choi Y E, Katsumi M, Sano H. Triiodobenzoic acid, an auxin polar transport inhibitor, suppresses somatic embryo formation and postembryogenic shoot/root development in Eleutherococcus senticosus.  Plant Sci. 2001;  160 1183-1190
  • 18 Nhut D T, Hanh N TM, Tuan P Q, Nguyet L TM, Tram N TH, Chinh N C, Nguyen N H, Vinh D N. Liquid culture as a positive condition to induce and enhance quality and quantity of somatic embryogenesis of Lilium longiflorum.  Sci Hortic. 2006;  110 93-97
  • 19 Yu F R, Yu F H, Li R, Wang R. Inhibitory effects of the Gentiana macrophylla (Gentianaceae) extract on rheumatoid arthritis of rats.  J Ethnopharmacol. 2004;  95 77-81
  • 20 Coscia C J, Guarnaccia R, Botta L. Monoterpene biosynthesis. I. Occurrence and mevalonoid origin of gentiopicroside and loganic acid in Swertia caroliniensis.  Biochemistry. 1969;  8 5036-5043
  • 21 Croteau R, Kutchan T M, Lewis N G. Natural products (secondary metabolites). Buchanan B, Gruissem W, Jones R Biochemistry and molecular biology of plants. Maryland; American Society of Plant Physiologists 2000: 1250-1318
  • 22 Lin P C, Ye Z H, Lu Y C, Zhao S Q, Hu F Z, Ji L J. Content determination of loganic acid and gentiopicroside in Tibetan herbal medicines Gentiana macrophylla and G. straminea by HPLC.  J Chin Med Mater. 2004;  27 819-821
  • 23 Kumarasamy Y, Nahar L, Sarker S D. Bioactivity of gentiopicroside from the aerial parts of Centaurium erythraea. .  Fitoterapia. 2003;  74 151-154
  • 24 Wang D, Xu M, Zhu H T, Chen K K, Zhang Y J, Yang C R. Biotransformation of gentiopicroside by asexual mycelia of Cordyceps sinensis.  Bioorg Med Chem Lett. 2007;  17 3195-3197
  • 25 Hikage T, Saitoh Y, Tanaka-Saito C, Hagami H, Satou F, Shimota Y, Nakano Y, Takahashi M, Takahata Y, Tsutsumi K. Structure and allele-specifc expression variation of novel α/β hydrolase fold proteins in gentian plants.  Mol Genet Genomics. 2007;  278 95-104
  • 26 Shimazu T, Kurata K. Dynamic dissolved oxygen concentration control for enhancing the formation rate of torpedo-stage embryos in carrot somatic embryo culture.  J Biosci Bioeng. 2003;  95 384-390
  • 27 Linossier L, Veisseire P, Cailloux F, Coudret A. Effects of abscisic acid and high concentrations of PEG on Hevea brasiliensis somatic embryos development.  Plant Sci. 1997;  124 183-191
  • 28 Shigeta J, Satoa K, Mii M. Effects of initial cell density, pH and dissolved oxygen on bioreactor production of carrot somatic embryos.  Plant Sci. 1996;  115 109-114
  • 29 Faure O, Aarrouf J, Nougarède A. Ontogenesis, differentiation and precocious germination in anther-derived somatic embryos of grapevine (Vitis vinifera L.): embryonic organogenesis.  Ann Bot. 1996;  78 29-37
  • 30 Liu H, Wang Y. Embryological studies in Gentiana macrophylla.  Acta Bot Boreal Occident Sin. 1994;  14 243-248
  • 31 West M AL, Harada J J. Embryogenesis in higher plants: an overview.  Plant Cell. 1993;  5 1361-1369
  • 32 Zimmerman J L. Somatic embryogenesis: a model for early development in higher plants.  Plant Cell. 1993;  5 1411-1423
  • 33 Sharma P, Pandey S, Bhattacharya A, Nagar P K, Ahuja P S. ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) O. Kuntze.  J Plant Physiol. 2004;  161 1269-1276
  • 34 McGarvey D J, Croteau R. Terpenoid metabolism.  Plant Cell. 1995;  7 1015-1026
  • 35 Caliş I, Rüegger H, Chun Z, Sticher O. Secoiridoid glucosides isolated from Gentiana gelida.  Planta Med. 1990;  56 406-409
  • 36 Wang C, Xing X F, Ma L X, Guan Y, Dai S J, Liu M Y. Determination of gentiopicroside in different morphological types of cultivated Gentiana manshurica population.  Zhongguo Zhong Yao Za Zhi. 2004;  29 841-844
  • 37 Zhao Y, Zhang R, Sun W J. Enrichment process of gentiopicroside from the leaves of Gentiana macropylla with macroporous resin.  Zhong Yao Cai. 2007;  30 1583-1586
  • 38 Chen Y, Qiu D Y, Guo F X, Wang E J, Liu F Z. Investigation on explovitage of Gentiana straminea.  Zhong Yao Cai. 2007;  30 1214-1216
  • 39 Bianco A, Ramunno A, Melchioni C. Iridoids from seeds of Gentiana lutea.  Nat Prod Res. 2003;  17 221-224
  • 40 Chueh F S, Chen C C, Sagare A P, Tsay H S. Quantitative determination of secoiridoid glucosides in in vitro propagated plants of Gentiana davidii var. formosana by high performance liquid chromatography.  Planta Med. 2001;  67 70-73
  • 41 Menković N, Savikin-Fodulović K, Momcilović I, Grubisić D. Quantitative determination of secoiridoid and gamma-pyrone compounds in Gentiana lutea cultured in vitro.  Planta Med. 2000;  66 96-98

1 These authors made equal contributions to this work.

Zi-Qin Xu

Institute of Life Science
Northwest University

Taibaibeilu 229

Xi'an

710069 Shaanxi

People's Republic of China

Phone: + 86 29 88 30 34 84

Email: ziqinxu@nwu.edu.cn

    >