Synthesis 2024; 56(08): 1285-1296
DOI: 10.1055/a-2232-8776
paper

DBU-Mediated Oxidation of β-Dicarbonyls: Formation of Hydroxylated and Rearranged Products under Air Atmosphere

Shuai Peng
,
Tianqi Wang
,
Xixuan Zhao
,
Boan Yao
,
Kaishuo Zhao
,
Yongguo Liu
,
Baoguo Sun
,
Hongyu Tian
,
Sen Liang
Financial support from the National Natural Science Foundation of China (No. 32130083).


Abstract

The oxidation of different β-dicarbonyls in acetonitrile has been explored under an air atmosphere in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). The presence of DBU resulted in the formation of hydroxylated products or rearrangement products derived from hydroxylated products. Specifically, the transformation of 2-oxocyclopentanecarboxylates to 2-hydroxyhexanedioates was achieved with good yields when additional 1,2-bis(diphenylphosphino)ethane and ROH were present. DBU proved to be indispensable for this transformation and showed specificity beyond its usual role as a base.

Supporting Information



Publication History

Received: 24 November 2023

Accepted after revision: 19 December 2023

Accepted Manuscript online:
19 December 2023

Article published online:
24 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Olack G, Morrison H. J. Org. Chem. 1991; 56: 4969
    • 1b Barrett AG. M, Head J, Smith ML, Stock NS, White AJ. P, Williams DJ. J. Org. Chem. 1999; 64: 6005
    • 1c Wellington KD, Cambie RC, Rutledge PS, Bergquist PR. J. Nat. Prod. 2000; 63: 79
    • 2a Christoffers J, Baro A, Werner T. Adv. Synth. Catal. 2004; 346: 143
    • 2b Russo A, De Fusco C, Lattanzi A. RSC Adv. 2012; 2: 385
    • 3a Andriamialisoa RZ, Langlois N, Langlois Y. Tetrahedron Lett. 1985; 26: 3563
    • 3b Asahara H, Nishiwaki N. J. Org. Chem. 2014; 79: 11735
    • 3c Lattanzi A, Meninno S, Villano R. Eur. J. Org. Chem. 2021; 1758
    • 4a Yin C, Cao W, Lin L, Liu X, Feng X. Adv. Synth. Catal. 2013; 355: 1924
    • 4b Wang Y, Wang S, Gao Q, Li L, Zhi H, Zhang T, Zhang J. Tetrahedron 2019; 75: 3856
    • 4c Gong B, Meng Q, Su T, Lian M, Gao Z. Synlett 2009; 2659
    • 4d Qing H, Wang Y, Zheng Z, Chen S, Meng Q. Tetrahedron: Asymmetry 2016; 27: 834
    • 4e Tang X.-F, Zhao J.-N, Wu Y.-F, Zheng Z.-H, Ma C.-F, Yu Z.-Y, Yun L, Liu G.-Z, Meng Q.-W. Synth. Commun. 2020; 50: 2478
    • 4f Xiao G, Gao X, Yan W, Wu T, Peng X. Catal. Lett. 2019; 149: 1765
  • 5 Adam W, Smerz AK. Tetrahedron 1996; 52: 5799
  • 6 Yu J, Cui J, Zhang C. Eur. J. Org. Chem. 2010; 7020
    • 7a Davis FA, Liu H, Chen B.-C, Zhou P. Tetrahedron 1998; 54: 10481
    • 7b Lin X, Ruan S, Yao Q, Yin C, Lin L, Feng X, Liu X. Org. Lett. 2016; 18: 3602
    • 7c Zou L, Wang B, Mu H, Zhang H, Song Y, Qu J. Org. Lett. 2013; 15: 3106
  • 8 Lu M, Zhu D, Lu Y, Zeng X, Tan B, Xu Z, Zhong G. J. Am. Chem. Soc. 2009; 131: 4562

    • 9a Wang Y, Lu R, Yao J, Li H. Angew. Chem. Int. Ed. 2021; 60: 6631
    • 9b Liu C.-H, Wang Z, Xiao L.-Y, Mukadas, Zhu D.-S, Zhao Y.-L. Org. Lett. 2018; 20: 4862
    • 10a Tang X.-F, Zhao J.-N, Wu Y.-F, Zheng Z.-H, Feng S.-H, Yu Z.-Y, Liu G.-Z, Meng Q.-W. Org. Biomol. Chem. 2019; 17: 7938
    • 10b Wang Y, Yin H, Tang X, Wu Y, Meng Q, Gao Z. J. Org. Chem. 2016; 81: 7042
    • 10c Fischer J, Mele L, Serier-Brault H, Nun P, Coeffard V. Eur. J. Org. Chem. 2019; 6352
    • 10d Yoshioka M, Nishioka T, Hasegawa T. J. Org. Chem. 1993; 58: 278
    • 10e Zhao J, Yang F, Yu Z, Tang X, Wu Y, Ma C, Meng Q. Chem. Commun. 2019; 55: 13008
    • 11a Chuang GJ, Wang W, Lee E, Ritter T. J. Am. Chem. Soc. 2011; 133: 1760
    • 11b Miyamura H, Kobayashi S. Chem. Lett. 2012; 41: 976
    • 11c Rössle M, Christoffers J. Tetrahedron 2009; 65: 10941
    • 11d Christoffers J, Werner T. Synlett 2002; 119
    • 12a Yu S.-M, Cui K, Lv F, Yang Z.-Y, Yao Z.-J. Tetrahedron Lett. 2016; 57: 2818
    • 12b Miao C.-B, Wang Y.-H, Xing M.-L, Lu X.-W, Sun X.-Q, Yang H.-T. J. Org. Chem. 2013; 78: 11584
    • 13a Liang Y.-F, Jiao N. Angew. Chem. Int. Ed. 2014; 53: 548
    • 13b Watanabe T, Ishikawa T. Tetrahedron Lett. 1999; 40: 7795
  • 14 Shpasser D, Balazs YS, Kapon M, Sheynis T, Jelienk R, Eisen MS. Chem. Eur. J. 2011; 17: 8285
  • 15 Chaudhari MB, Sutar Y, Malpathak S, Hazra A, Gnanaprakasam B. Org. Lett. 2017; 19: 3628
  • 16 Mikhael M, Adler SA, Wengryniuk SE. Org. Lett. 2019; 21: 5889
  • 17 Rubottom GM, Mott RC, Juve HD. Jr. J. Org. Chem. 1981; 46: 2717
  • 18 Kieslich D, Christoffers J. Org. Lett. 2021; 23: 953
  • 19 Asahara H, Nishiwaki N. J. Org. Chem. 2014; 79: 11735
  • 20 Obushak MD, Matiychuk VS, Turytsya VV. Tetrahedron Lett. 2009; 50: 6112
  • 21 Li D, Schröder K, Bitterlich B, Tse MK, Beller M. Tetrahedron Lett. 2008; 49: 5976
  • 22 Blaser F, Deschenaux P.-F, Kallimopoulos T, Jacot-Guillarmod A. Helv. Chim. Acta 1991; 74: 787
  • 23 Toullec PY, Bonaccorsi C, Mezzetti A, Togni A. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 5810