Synthesis 2024; 56(02): 299-311
DOI: 10.1055/a-2186-6964
paper

Preparation and Carbocupration–Silylation of Allyl Propiolates: Vicinal Functionalization To Form Polysubstituted (E)-Vinylic Silanes

Cameron D. Massey
,
,
Michael P. Jennings
The authors thank The University of Alabama for financial support of this work.


This work is dedicated to the memory of Dr. Michael P. Jennings, a beloved mentor, friend, and father.

Abstract

The preparation and TMSOTf-mediated catalytic carbocupration–silylation of allylic propiolates has been investigated, expanding on previous syntheses of a variety of β-alkyl- and β-aryl-substituted vinylsilanes from an ethyl propiolate precursor. With few exceptions, the series of synthesized O-allyl (E)-vinylsilanes has been isolated in high yields (61–89%) with exceptional diastereoselectivities (E/Z >20:1). Additionally, we demonstrated a novel LDA-initiated, TMSCl-mediated Ireland–Claisen rearrangement of a representative allylic ester.

Supporting Information



Publication History

Received: 21 June 2023

Accepted after revision: 05 October 2023

Accepted Manuscript online:
05 October 2023

Article published online:
15 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Corey EJ, Katzenellenbogen JA. J. Am. Chem. Soc. 1969; 91: 1851
  • 2 Corey EJ, Boaz NW. Tetrahedron Lett. 1985; 26: 6015
  • 3 Kubota K, Hayama K, Iwamoto H, Ito H. Angew. Chem. Int. Ed. 2015; 54: 8809
  • 4 Skucas E, MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 9090
  • 5 Chen H, Wang Z, Zhang Y, Huang Y. J. Org. Chem. 2013; 78: 3503
  • 6 Besselièvre F, Piguel S, Mahuteau-Betzer F, Grierson DS. Org. Lett. 2008; 10: 4029
  • 7 Itoh T, Shimizu Y, Kanai M. Org. Lett. 2014; 16: 2736
  • 8 Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
  • 9 Chen Z.-G, Wei J.-F, Li R.-T, Shi X.-Y, Zhao P.-F. J. Org. Chem. 2009; 74: 1371
  • 10 Wang J, Sun Q, Chan S, Su H. Appl. Catal., A 2016; 509: 97
  • 11 Nam KB, Lee SH, Hong SC. Appl. Surf. Sci. 2021; 544: 148643
  • 12 Hickman AJ, Sanford MS. Nature 2012; 484: 177
  • 13 Corey EJ, Boaz NW. Tetrahedron Lett. 1985; 26: 6019
  • 14 Hellenbrand T, Wanner KT. Eur. J. Org. Chem. 2014; 4398
  • 15 Mueller AJ, Jennings MP. Org. Lett. 2007; 9: 5327
  • 16 Mueller Hendrix AJ, Jennings MP. Org. Lett. 2010; 12: 2750
  • 17 Johnson DA, Muelle Hendrix AJ, Jennings MP. J. Org. Chem. 2018; 83: 9914
  • 18 Johnson DA, Jennings MP. Org. Lett. 2018; 20: 6099
  • 19 Fealy LM, Jennings MP. Tetrahedron Lett. 2020; 61: 151384
  • 20 Probasco KC, Jennings MP. J. Org. Chem. 2021; 86: 8945
  • 21 Probasco MS, Johnson DA, Jennings MP. Org. Lett. 2019; 21: 1379
  • 22 Takacs JM, Jiang X.-t. Curr. Org. Chem. 2003; 7: 369
  • 23 Lei S.-H, Zhong Y, Cai X.-P, Huang Q, Qu J.-P, Kang Y.-B. Org. Chem. Front. 2022; 9: 687
  • 24 Blackwell HE, O’Leary DJ, Chatterjee AK, Washenfelder RA, Bussmann DA, Grubbs RH. J. Am. Chem. Soc. 2000; 122: 58
  • 25 Keitz BK, Endo K, Herbert MB, Grubbs RH. J. Am. Chem. Soc. 2011; 133: 9686
  • 26 Matsuda N, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2012; 51: 11827
  • 27 Miura T, Morimoto M, Murakami M. Org. Lett. 2012; 14: 5214
  • 28 Gatzenmeier T, Kaib PS. J, Lingnau JB, Goddard R, List B. Angew. Chem. Int. Ed. 2018; 57: 2464
  • 29 Li H, Wu J. Org. Lett. 2015; 17: 5424
  • 30 Abid I, Gosselin P, Mathé-Allainmat M, Abid S, Dujardin G, Gaulon-Nourry C. J. Org. Chem. 2015; 80: 9980
  • 31 Zhang L.-W, Deng X.-J, Zhang D.-X, Tian Q.-Q, He W. J. Org. Chem. 2021; 86: 5152
  • 32 Schmidt C, Kazmaier U. Org. Biomol. Chem. 2008; 6: 4643
  • 33 Mohy El Dine T, Erb W, Berhault Y, Rouden J, Blanchet J. J. Org. Chem. 2015; 80: 4532
  • 34 Gernigon N, Al-Zoubi RM, Hall DG. J. Org. Chem. 2012; 77: 8386
  • 35 Lee E, Ko SB, Jung KW, Chang MH. Tetrahedron Lett. 1989; 30: 827
  • 36 Najafi MR, Wang ML, Zweifel G. J. Org. Chem. 1991; 56: 2468
  • 37 Reetz MT, Kindler A. J. Organomet. Chem. 1995; 502: C5
  • 38 Woodward S. Chem. Soc. Rev. 2000; 29: 393
  • 39 Corey EJ, Boaz NW. Tetrahedron Lett. 1984; 25: 3063
  • 40 Nakamura E, Mori S. Angew. Chem. Int. Ed. 2000; 39: 3750
  • 41 Nakamura E, Kuwajima I. J. Am. Chem. Soc. 1984; 106: 3368
  • 42 Nilsson K, Andersson T, Ullenius C. J. Organomet. Chem. 1997; 545-546: 591
  • 43 Fernández-Mateos E, Maciá B, Yus M. Adv. Synth. Catal. 2013; 355: 1249
  • 44 Wurtz Synthesis . In Comprehensive Organic Name Reactions and Reagents, 1st ed. Wang Z. John Wiley & Sons, Inc; Hoboken: 2010: 3094-3099
  • 45 The percentage of Wurtz coupled impurity was determined by low-temperature MeOH quench and 1H NMR integration of our commercial batches, comparing relative integration of toluene to diphenylethane signals.
  • 46 Kobayashi S, Shibukawa K, Miyaguchi Y, Masuyama A. Asian J. Org. Chem. 2016; 5: 636
  • 47 Kadam A, Nguyen M, Kopach M, Richardson P, Gallou F, Wan Z.-K, Zhang W. Green Chem. 2013; 15: 1880
  • 48 Pal D, Wright TB, O’Connor R, Evans PA. Angew. Chem. Int. Ed. 2021; 60: 2987
  • 49 Neises B, Steglich W. Angew. Chem., Int. Ed. Engl. 1978; 17: 522
  • 50 Inanaga J, Hirata K, Saeki H, Katsuki T, Yamaguchi M. Bull. Chem. Soc. Jpn. 1979; 52: 1989
  • 51 Balas L, Jousseaume B, Langwost B. Tetrahedron Lett. 1989; 30: 4525
  • 52 Dhimitruka I, SantaLucia J. Org. Lett. 2006; 8: 47
  • 53 Mathew T, Billich A, Cavallari M, Bornancin F, Nussbaumer P, De Libero G, Vasella A. Chem. Biodiversity 2009; 6: 705
  • 54 Farina V. Tetrahedron Lett. 1989; 30: 6645
  • 55 Charette AB, Cote B, Monroc S, Prescott S. J. Org. Chem. 1995; 60: 6888
  • 56 Armarego WL. F, Perrin DD. Purification of Laboratory Chemicals, 4th ed. 1997
  • 57 Burchat AF, Chong JM, Nielsen N. J. Organomet. Chem. 1997; 542: 281
  • 58 Inoue R, Yamaguchi M, Murakami Y, Okano K, Mori A. ACS Omega 2018; 3: 12703
  • 59 Bates RW, Li L, Palani K, Phetsang W, Loh JK. Asian J. Org. Chem. 2014; 3: 792
  • 60 Sai M. Eur. J. Org. Chem. 2022; e202200052
  • 61 Feray L, Bertrand MP. Eur. J. Org. Chem. 2008; 3164
  • 62 Ji J, Zhang C, Lu X. J. Org. Chem. 1995; 60: 1160