Synthesis 2024; 56(08): 1259-1272
DOI: 10.1055/a-2159-1688
short review

Progress on the Enantioselective Synthesis of Axially Chiral Cycloalkylidenes

Zi-Lu Wang
,
Yun-He Xu
We gratefully acknowledge funding in support of this work from the National Natural Science Foundation of China (21871240), the State Key Laboratory of Elemento-organic Chemistry, Nankai University (202001), the Fundamental Research Funds for the Central Universities (WK2060000017), and the Open Project of Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University (KFJJ2022013).


Abstract

The discovery of new asymmetric synthetic methodologies and the asymmetric synthesis of new chiral compounds have been a major focus of synthetic organic chemists for decades. Axially chiral compounds have gained considerable attention in recent years because of their widespread utility in asymmetric catalysis and synthesis. Methods for the asymmetric synthesis of axially chiral cycloalkylidenes, a subset of axially chiral molecules, are far fewer compared to those developed for the preparation of chiral allenes and chiral biaryl compounds. In this review, different approaches for the synthesis of axially chiral cycloalkylidenes are summarized.

1 Introduction

2 Methods for the Enantioselective Synthesis of Axially Chiral Cycloalkylidenes

2.1 Asymmetric Synthesis of Axially Chiral Cycloalkylidenes

2.1.1 Asymmetric Horner–Wadsworth–Emmons (HWE) Reactions

2.1.2 Asymmetric Wittig Reactions

2.1.3 Asymmetric Dehydrohalogenation Reactions

2.1.4 Asymmetric Elimination Reactions of Chiral Sulfoxides/Selenoxides

2.1.5 Kinetic Resolution of Prochiral Compounds

2.1.6 Other Miscellaneous Methods

2.2 Catalytic Asymmetric Synthesis of Axially Chiral Cycloalkylidenes

3 Conclusion



Publication History

Received: 24 July 2023

Accepted after revision: 23 August 2023

Accepted Manuscript online:
23 August 2023

Article published online:
17 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Burke D, Henderson DJ. Br. J. Anaesth. 2002; 88: 563
  • 2 Brooks WH, Guida WC, Daniel KG. Curr. Top. Med. Chem. 2011; 11: 760
    • 3a Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
    • 3b Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
    • 3c Modern Allene Chemistry, Vol. 1 and 2. Krause N, Hashmi AS. K. Wiley-VCH; Weinheim: 2004
    • 4a Perkin WH, Pope WJ. J. Chem. Soc., Trans. 1908; 93: 1075
    • 4b Perkin WH, Pope WJ, Wallach O. J. Chem. Soc., Trans. 1909; 95: 1789
    • 4c Perkin WH, Pope WJ. J. Chem. Soc., Trans. 1911; 99: 1510
    • 4d Brewster JH, Privett JE. J. Am. Chem. Soc. 1966; 88: 1419
    • 5a Lemieux RP, Schuster GB. J. Org. Chem. 1993; 58: 100
    • 5b Zhang Y, Schuster GB. J. Org. Chem. 1994; 59: 1855
    • 5c Suarez M, Schuster GB. J. Am. Chem. Soc. 1995; 117: 6732
    • 5d Zhang YF, Schuster GB. J. Org. Chem. 1995; 60: 7192
    • 6a Skuballa W, Vorbrüggen H. Angew. Chem. Int. Ed. 1981; 20: 1046
    • 6b Nickolson RC, Town MH, Vorbrüggen H. Med. Res. Rev. 1985; 5: 1
    • 6c Skuballa W, Schillinger E, Stuerzebecher CS, Vorbrueggen H. J. Med. Chem. 1986; 29: 313
    • 6d Gais H.-J, Schmiedl G, Ball WA, Bund J, Hellmann G, Erdelmeier I. Tetrahedron Lett. 1988; 29: 1773
    • 6e Rehwinkel H, Skupsch J, Vorbrüggen H. Tetrahedron Lett. 1988; 29: 1775
    • 6f Das S, Chandrasekhar S, Yadav JS, Grée R. Chem. Rev. 2007; 107: 3286
    • 6g Majed BH, Khalil RA. Pharmacol. Rev. 2012; 64: 540
  • 7 Tömösközi I, Janszó G. Chem. Ind. (London) 1962; 50: 2085
  • 8 Rein T, Pedersen TM. Synthesis 2002; 579
  • 9 Fiaud JC, Legros JY. Tetrahedron Lett. 1988; 29: 2959
  • 10 Hanessian S, Delorme D, Beaudoin S, Leblanc Y. J. Am. Chem. Soc. 1984; 106: 5754
  • 11 Hanessian S, Beaudoin S. Tetrahedron Lett. 1992; 33: 7655
  • 12 Hanessian S, Beaudoin S. Tetrahedron Lett. 1992; 33: 7659
  • 13 Shiro M, Koizumi T, Takahashi T, Matsui M, Maeno N. Heterocycles 1990; 30: 353
  • 14 Denmark SE, Chen CT. J. Am. Chem. Soc. 1992; 114: 10674
  • 15 Denmark SE, Rivera I. J. Org. Chem. 1994; 59: 6887
  • 16 Tanaka K, Ohta Y, Fuji K, Taga T. Tetrahedron Lett. 1993; 34: 4071
  • 17 Tanaka K, Watanabe T, Ohta Y, Fuji K. Tetrahedron Lett. 1997; 38: 8943
  • 18 Tanaka K, Watanabe T, Shimamoto K.-y, Sahakitpichan P, Fuji K. Tetrahedron Lett. 1999; 40: 6599
  • 19 Furuta T, Iwamura M. J. Chem. Soc., Chem. Commun. 1994; 2167
  • 20 Vaulont I, Gais H.-J, Reuter N, Schmitz E, Ossenkamp RK. L. Eur. J. Org. Chem. 1998; 805
  • 21 Abiko A, Masamune S. Tetrahedron Lett. 1996; 37: 1077
  • 22 Kumamoto T, Koga K. Chem. Pharm. Bull. 1997; 45: 753
  • 23 Mizuno M, Fujii K, Tomioka K. Angew. Chem. Int. Ed. 1998; 37: 515
  • 24 Arai S, Hamaguchi S, Shioiri T. Tetrahedron Lett. 1998; 39: 2997
  • 25 Sano S, Yokoyama K, Teranishi R, Shiro M, Nagao Y. Tetrahedron Lett. 2002; 43: 281
  • 26 Bestmann HJ, Lienert J. Angew. Chem. Int. Ed. 1969; 8: 763
  • 27 Toda F, Akai H. J. Org. Chem. 1990; 55: 3446
  • 28 Dai W.-M, Wu J, Huang X. Tetrahedron: Asymmetry 1997; 8: 1979
  • 29 Dai WM, Wu AX, Wu HF. Tetrahedron: Asymmetry 2002; 13: 2187
  • 30 Gramigna L, Duce S, Filippini G, Fochi M, Franchini MC, Bernardi L. Synlett 2011; 2745
  • 31 Duhamel L, Ravard A, Plaquevent JC, Davoust D. Tetrahedron Lett. 1987; 28: 5517
    • 32a Vadecard J, Plaquevent J.-C, Duhamel L, Duhamel P. J.Chem. Soc., Chem. Commun. 1993; 116
    • 32b Vadecard J, Plaquevent J.-C, Duhamel L, Duhamel P, Toupet L. J. Org. Chem. 1994; 59: 2285
    • 32c Amadji M, Vadecard J, Cahard D, Duhamel L, Duhamel P, Plaquevent J.-C. J. Org. Chem. 1998; 63: 5541
  • 33 Solladie G, Zimmermann RG. Tetrahedron Lett. 1984; 25: 5769
  • 34 Solladié G, Zimmermann R, Bartsch R, Walborsky HM. Synthesis 1985; 662
  • 35 Erdelmeier I, Gais HJ, Lindner HJ. Angew. Chem. Int. Ed. 1986; 25: 935
    • 36a Erdelmeier I, Gais HJ. J. Am. Chem. Soc. 1989; 111: 1125
    • 36b Erdelmeier I, Bülow G, Woo C.-W, Decker J, Raabe G, Gais H.-J. Chem. Eur. J. 2019; 25: 8371
  • 37 Komatsu N, Matsunaga S, Sugita T, Uemura S. J. Am. Chem. Soc. 1993; 115: 5847
  • 38 Nakamura S, Aoki T, Ogura T, Wang L, Toru T. J. Org. Chem. 2004; 69: 8916
  • 39 Nakamura S, Ogura T, Wang L, Toru T. Tetrahedron Lett. 2004; 45: 2399
  • 40 Narasaka K, Hidai E, Hayashi Y, Gras J.-L. J. Chem. Soc., Chem. Commun. 1993; 102
  • 41 VanNieuwenhze MS, Sharpless KB. J. Am. Chem. Soc. 1993; 115: 7864
  • 42 Mills WH, Bain AM. J. Chem. Soc., Trans. 1910; 97: 1866
  • 43 Toda F, Akai H. J. Org. Chem. 1990; 55: 4973
  • 44 Murakata M, Imai M, Tamura M, Hoshino O. Tetrahedron: Asymmetry 1994; 5: 2019
  • 45 Chen ZL, Halterman RL. J. Am. Chem. Soc. 1992; 114: 2276
  • 46 Iguchi M, Tomioka K. Org. Lett. 2002; 4: 4329
  • 47 Agudo R, Roiban GD, Reetz MT. J. Am. Chem. Soc. 2013; 135: 1665
  • 48 Fiaud JC, Legros JY. J. Org. Chem. 1990; 55: 4840
  • 49 Nimmagadda SK, Mallojjala SC, Woztas L, Wheeler SE, Antilla JC. Angew. Chem. Int. Ed. 2017; 56: 2454
  • 50 Crotti S, Di Iorio N, Artusi C, Mazzanti A, Righi P, Bencivenni G. Org. Lett. 2019; 21: 3013
  • 51 Li S, Xu J.-L, Xu Y.-H. Org. Lett. 2022; 24: 6054
  • 52 Ma C, Sun Y, Liu S, Li Z.-M, Yang J, Guo H, Zhang J. Chem. Catal. 2022; 2: 3196
  • 53 Zhu S, Mao J.-H, Cheng JK, Xiang S.-H, Tan B. Chem 2022; 8: 2529
  • 54 He S.-J, Zhu S, Qiu S.-Q, Ding W.-Y, Cheng JK, Xiang S.-H, Tan B. Angew. Chem. Int. Ed. 2023; 62: e202213914